
 

1 Basic Principles
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Independence

X and I are independent if fy xy fxtafyld
Remark Dependence Correlation

Correlation is measured by XD X Y
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FUNCTIONS OF RANDOM VARIABLE

Functions of random variables are also random variables
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Binomial and Multinomial Distributions
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The probability changes as follows
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Poisson Distribution

Pch N YI è Probability of agivennumber of events
occurring in a fixed interval oftime or space
if those events occur with a Known

Properties constant mean rete
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Histogram Summary
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MULTIDIMENSIONAL SAMPLES

Case Where N measurements are performed of Mdifferent variables
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2 STATISTICAL MODEL

It's the mathematical expression describing yourobservation
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Statistical model for id samples

Suppose youhave a sample X Xp Xu

The statistical model can be written as
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Extendendel Likelihood Function

If the Eze of the sample is te eat but follows Poisson Distribution

n a PoisG

In such cases Che likelihood function hasta be extended
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Composite Samples

In realistic cases samples are often composite

Composite Sample sample in which events con come from different origins
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Treatment of nuisance parameters

Suppose you model has one parameter ofinterest and otherparameteryou
do not one about

New term in likelihood

g economia
EEEE

Detailed Example

Lets consider a Poissonian process with background Measurement of radioctinty
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3 Inference Generdies
AveWhat allow us togain from a sample and a StatisticalModel some knowledge about

the parameter of interest

Knowledge acquisition process iscelled inference

Two big schools of thought

FREQUENTIST BAYESIAN

Different interpretation of probability

INTERPRETATION 1 Probability Frequency of occurrence

PIA light where Asome event
A numberof times event A occurs
n total number of events

Example dice roll

INTERPRETATION 2 Probability Degree of belief on ocurence

Often used for unique events forwhich Frequentistadulation impossible
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Move on bayesian approach

In bayesian approach inference proceeds as follows

1 Writestatistical model
2 Final outwhatis best prior
3 Compite postino
4 Conclude from posterior

Bayes Theorem

For 2 abitray events A and B
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4 Parameter Estimation

Frequentist Appuoch

ad Let X be gassian with te suol mean µ

Measurement providing a sample of 4valves Hakataxd
Problem How we determine µ from these Xi
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Doing this we hope that weget a rate thatis close tothe truevalue
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1 What does it mean when we say that an estimate is dose to the
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2 How are estimators determined in generi

ANSWER 1

It means nothing d is notKnown

Nosense random venable a constant

In order to determine whether an estimator isgood or not need to get
back to fondamenta frequentist interrogation
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many times
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Frequentist Properties of estimators

Three main properties Consistency Bias EFFICIENCY

CONSISTENCY

An estimator is consistent when it converges in probability towards the true value as
n Da
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BIAS

An estimator is unbiased when its expectation value is egual to the true
value for all n

è 0

The bias of an estimator is defined as D è 0

EFFICIENCY

An estimator is efficient when its variance is equal to the RCF bound
RCFbound
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Ideal estimators eve consistent unbiased and efficiency

Not always possible ed Should at least be consistent

How estimators are determined ingeneral

1 Maximum Likelihood

Let X be a grissin v.v with Known T and unknown mean µ

Suppose we make a measurement for the determination of µ pronding 10 valuesHahn

Of the 3gaussian distribution presented

the BLUE one has the minimum

value of inf

The Maximum likelihood estimator èn is the parameter that
Maximizes the likelihood function
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tragedies of estimators

The ML method promotes estimators with nice properties

Functional Invariance In alli
ML estinta are consistent

If an unbiased and efficient estimatorexist D it'svariance is
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It's possible to have an error bar in addition to a single valle

YES GRAPHICAL METHOD

GRAPHICAL HEROD

India tnhlemltie enddthfpaantfleaifthhlle.at
bot Gflnklla o this

In Lld Indie L'e è.ci d'linkde legati
no Festimator unbiased and efficient vertente faintaah

Th
lurida InLlà 10 èn

anagen
Ottis sto ioonne this meos

Conclusion

è I vartèmit iiithen lullele IndlémitE



theesphanetodssowoitsuntapsiamarisolinieresi
epataneierolinieresi

We comebackioHisnotion sia

iggy µ

i
OUsinghismethod messi

i Estimateuncertaintieson H2 parameters
i Estimatecomedianbetweenthetwoestimates

2 Least Squares Method

LSM is useful when one is interested in dependance of one ranable with one or

move other variables
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Least squared and Max likelihood method

Fougassian observations the likelihood is

Le e E 4 Tracymi

For indipendent desertions
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We see that 21hL 7 Minimizing I is equivalent tomaximizing
the likelihood

Least squared Method binned sample



Bayesian way of estimating parameters

Based on the postenor distribution
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Once the posterior filio is found parameters con be estimated using either
Che

Impact of prior onfinalresult decreases 2s sample size increases

2D Example

Poissonian measurementwith signal and background
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Also bayesian inference offers an easy way to describe how knowledge increases

a measurements we performed

get often
Supposeyoumaketwo measurementswith kehoodsLi and
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i Positio of tisimeasurementusedasplotinsecondone

Generaization io n measurements

i Asthenumberofmeasurementincreases the kehoodierni
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