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Abstract
This analysis employs various machine learning techniques and statistical methods to achieve
binary classification of signal and background neutrino events. The data, derived from Monte
Carlo simulations of the IceCube experiment, serves to optimize the distinction between true
neutrino signals and background noise, crucial for extracting meaningful information from
detected events. The methodologies explored include the mRMR feature selection process,
Naive Bayes classifier, k-Nearest Neighbors, and Random Forest classifier, each evaluated
for their effectiveness in enhancing the accuracy of neutrino event classification.
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1 Introduction
The IceCube Neutrino Observatory at the South Pole, allows a detailed exploration of the
mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV.
It is designed to look at point-like sources of neutrinos which, considering that high energy
cosmic rays are not sensitive to magnetic fields, could contain information on the direction
of the original source. However, the neutrino signals are swamped by the background of
atmospheric cosmic ray muons. The distinction of background and signal events is then
rather fundamental in order to extract information from the detected physical quantities. A
useful tool to optimize the classification techniques are MonteCarlo simulations: simulations
of an experiment, using random number generators, which provide pseudo-data based on
known properties of signal and background events. Then, since the label is known, these
simulations are useful to produce signal-background separation analyses.

2 ICE CUBE experiment
The IceCube Neutrino Observatory, situated at the geographic South Pole, is a highly spe-
cialized experiment for the detection of high-energy neutrinos and muons through the mea-
surement of Cherenkov light in deep Antarctic ice. The detector comprises three main
components: the in-ice array, DeepCore, and IceTop. Its structure is shown Figure 1.

Figure 1: Structure of the IceCube detector, highlighting its 3 subdetectors.

The in-ice array, located at depths between 1450 and 2450 meters, includes 5160 photo-
multipliers arranged along 86 strings. The photo-multipliers capture Cherenkov light emitted
when high-energy charged particles exceed the phase velocity of light in the medium. The
velocity c in the medium is given by c = c0/n, where c0 refers to the speed of light in vacuum
and n to the refractive index of the medium.
The DeepCore, a more densely packed section of the array with a lower threshold of 10GeV
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compared to the approximately 100GeV threshold of the in-ice array, allows for enhanced
detection of lower-energy neutrinos due to its closer photo-multiplier spacing and higher
sensitivity. The IceTop, positioned at the surface, detects cosmic ray air showers and serves
as a veto for the in-ice array to distinguish between cosmic ray and neutrino-induced events.
Neutrinos are detected through their interactions with ice nuclei, which occur via charged
current (CC) or neutral current (NC) interactions as described by:

νl(νl) + A → l± +X(CC)

νl + A → νl +X(NC)
(1)

where, νl represents a neutrino of type l, l± is the corresponding charged lepton and νl is
the antineutrino. A is the target nucleus, and X a hadronic final state.
In the detector, electrons produce approximately spherical cascades, whereas muons, due
to their lower energy loss rate, form extended tracks of Cherenkov light. Tau leptons, due
to their short lifetime, generally produce signatures similar to electrons unless at very high
energies. Neutral current interactions result in hadronic cascades, which are also observable
through their Cherenkov light emissions. The detection focuses on Cherenkov light gener-
ated by secondary particles like electron-positron pairs and photons from these interactions,
allowing for detailed study of high-energy astrophysical phenomena.
The use of events interacting within the detector, known as starting events, is an analytical
method where the outer sections of the detector function as a veto to eliminate atmospheric
muons. In this approach, the effective volume considered for analysis is smaller than the
total detector volume. All neutrino flavors contribute similarly, resulting in a significant
number of cascade events from neutral current interactions or charged current interactions
involving electron and tau neutrinos. These cascade events provide good energy resolution
but poor angular resolution.
Conversely, traces of through-going muons exhibit poor energy resolution but good angular
resolution, and depending on their energy, they can travel over long distances. This char-
acteristic allows the analysis to extend the effective volume beyond the physical detector
volume by utilizing the Earth as a shield against atmospheric muons. Muons arriving from
below the detector must originate from neutrino interactions, as they penetrate through the
Earth. By applying a cut based on the reconstructed zenith angle, it is possible to dis-
tinguish between atmospheric neutrinos and muon neutrinos, assuming perfect directional
reconstruction. However, due to imperfect reconstruction for a small fraction of events, this
cut only enhances the signal-to-noise ratio from 1 : 106 to 1 : 103.

To further separate incorrectly reconstructed muons from muon neutrinos, machine learning
techniques are employed. Improving the signal-background separation using this analysis
approach is the primary objective of this exercise.
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3 Statistical methods
The goal of this analysis is to perform a binary classification of signal and background
events, from Monte Carlo simulated IceCube data. The simulated dataset contains hundreds
of features with varying information content. In order to reduce the complexity and the
computation time it is necessary to select only a subset of features, which ideally maximizes
the information content regarding the target. This process is called attribute selection.

3.1 Attribute selection
There are several different methods to perform attribute selections which are based on dif-
ferent algorithms, but all aimed at maximazing the information gain. In this analysis specif-
ically, the mRMR selection was used.

3.1.1 mRMR

The minimum Redundancy, Maximum Relevance selection method , or mRMR, aims to
select features that are highly relevant to the target variable while minimizing redundancy
among themselves.

The relevance R of a feature xi to the target variable y is quantified using mutual information
I(xi, y):

I(x, y) =

∫
p(x, y) log

(
p(x, y)

p(x)p(y)

)
dxdy, (2)

while the redundancy D among a set of selected features S is defined as the average mutual
information between pairs of features xi and xj:

D =
1

|S|2
∑

xi,xj∈S

I(xi, xj) (3)

The objective is to maximize R−D, which is formally expressed as:

mRMR(xi) = I(xi, y)−
1

|S|
∑
xj∈S

I(xi, xj) (4)

This balance ensures that the selected features provide the most informative representation of
the target variable while avoiding redundancy, then improving the efficiency and performance
of the model.

3.1.2 Jaccard Index

The Jaccard index assess the validity of an attribute selection algorithm on a specific dataset.
In particular, it checks the stability of the attribute selection against statistical fluctuations
in the dataset. If the attribute selection is performed for two different subsets of the data,
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identifying with Fa the set of features for the first selection and with Fb the set of features
for the second selection, the Jaccard index is defined as:

J(Fa, Fb) =
|Fa ∩ Fb|
|Fa ∪ Fb|

(5)

where 0 < J(Fa, Fb) < 1. Values close to 1 indicate a similar selection. The process can be
then performed for a number l of subsets and the Jaccard score can be computed as follows:

J =
1

l(l − 1)

l∑
i=1

l∑
j=i+1

J(Fa, Fb) (6)

A stable attribute selection has a Jaccard score close to 1.

3.2 Classification
For the binary classification, three different methods were used: the Naive Bayes classifier,
the K Nearest Neighbours and a Random Forest classifier.

3.2.1 Naive Bayes Classifier

The Naive Bayes classifier is based on Bayes’ theorem, which describes the posterior prob-
ability of an hypothesis given the result of a measure, based on a prior probability of the
hypothesis:

P (C | x) = P (C) · P (x | C)

P (x)
(7)

In a binary classification problem, where for example C refers to the signal and C to the
background, the value of the coefficient Q:

Q =
P (C) · P (x | C)

P (C) · P (x | C)
(8)

is an indicator of the likelihood of an event being signal (Q > 1) or background (Q < 1).
For multiple features (x1, x2, . . . , xn), under the key assumption that the features in the
dataset are conditionally independent given the class label, the global probability is simply
the product probability. The coefficient Q is then expressed as:

Q =
P (C | x1 . . . xn)

P (C | x1 . . . xn)
=

∏n
i=1 P (C | xi)∏n
i=1 P (C | xi)

(9)

3.2.2 kNN

The k-Nearest Neighbors (kNN) classifier is a non-parametric, supervised learning algorithm
used for classification and regression tasks. It works by identifying the k closest training
examples in the feature space to a given query point. Secondly, it identifies the class of said
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point as the most present between the k neighbours, or it outputs a probability which is the
mean of the classes of the k neighbours. In the case, to get an actual label, a threshold value
has to be chosen. The distance between the query point and the training examples depends
on the metric chosen. The most commonly used is the euclidean distance:

d(x, y) =

√√√√ n∑
i=1

(xi − yi)2 (10)

Other than the metric, the kNN algorithm can depend highly on the number of nearest
neighbours k.

3.2.3 Random Forest

The Random Forest classifier is a learning algorithm based on decision trees. A single tree
operates by recursively partitioning the feature space into subsets based on the value of the
input features, until a certain depth is reached, creating a tree-like model of decisions. In
order to minimize over-training, each tree in the forest is trained on a different subset of
the data, created through a process known as bootstrapping, where random samples with
replacement are taken from the original dataset. Furthermore, in order to increase the
model’s ability to generalize, the decision trees could also be built using a random subset of
features at each split. The final classification is determined by aggregating the predictions
from all the individual trees. Specifically, in the Breiman implementation, the final decision
c is the arithmetic mean of the different decision from the N trees:

c =
1

N

N∑
i=1

Pi (11)

3.2.4 Quality parameters

There are different methods to asses the goodness of a classification. From a binary classifi-
cation problem there a only four types of outcome for a single event: true positive (tp), false
positive (fp), true negative (tn) and false negative (fn). Using these, the following indexes
can be calculated:

precision =
tp

tp+ fp
(12)

recall = tp

tp+ fn
(13)

fβ = (1 + β2)
p · r

β2p+ r
(14)

The different types of outcome strongly depend on the chosen value τc of the threshold.
Another useful tool to check the performance of classification algorithms are the ROC curve
and the precision-recall curve. The ROC curve plots the true positive rate against the false
positive rate for different values of the threshold τc. They are defined as:
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TPR(τc) =
tp(τc)

tp(τc) + fn(τc)
(15)

and
FPR(τc) =

fp(τc)

fp(τc) + tn(τc)
(16)

The area under the ROC curve AROC is a quality parameter, which is equal to 1 for a perfect
classification model and equal to 0.5 for a random guess. Values of the area AROC < 0.5
mean that the model inverts the classes which can be corrected by simply inverting the
labels.
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4 Analysis
The analysis starts by importing the three different datasets: the signal dataset, the back-
ground dataset, and the test dataset. These datasets were sourced from CSV files and
imported into the analytical environment.
The signal and background datasets contain the ’label’ feature that ensure the distinction be-
tween the nature of a single event. The test dataset instead does not contain any labels at all.

4.1 Data preparation
A thorough data cleaning process was executed in order to ensure that the datasets were
adequately prepared for accurate and unbiased analysis. The steps followed are here briefly
described in chronological order.

The initial step involved verifying the dimensions of each dataset. The signal dataset con-
tained 17,933 rows and 283 features; the background dataset comprised 18,067 rows and 283
features; and the test dataset included 4,000 rows and 282 features.
We then performed features intersection to maintain consistency between the signal and
background datasets. Only the features that were included in both datasets were retained.
This essential step ensured that both datasets were comparable and compatible for the anal-
ysis.
Subsequently, features related to Monte Carlo simulations were removed to avoid introduc-
ing bias into the analysis. Columns containing the terms ’Corsika’, ’Weight’, ’MC’ and
’I3EventHeader’ were excluded from both the signal and background datasets.
It was then necessary to handle missing values such as the presence of NaN (Not a Num-
ber) and infinite values in the datasets. Features from the signal and background datasets
that had more than 95% of their values as NaN were removed. This decision was made
to eliminate features that were predominantly missing data, which could skew the analysis.
For the remaining incomplete features, the percentage of missing values was below 1%, so
the missing values were inputted using the mean value of the feature. This input method
ensured that the datasets remained as complete as possible without introducing significant
bias.
Some features contained only a single unique value across all rows. Those feature were re-
moved from the dataset since they do not provide any information for the analysis or for
training machine learning models. Finally, index resetting was necessary. The indices of
the signal and background datasets were reset. This step facilitated seamless data manipu-
lation and analysis by ensuring a clean and consecutive ordering of rows. Proper indexing is
crucial for maintaining the integrity of data during subsequent analyses and manipulations.
This pre-processing was critical for maintaining the integrity and reliability of the analytical
results. All the features removed from signal and background datasets were also removed
from the test dataset.
The process ends with the concatenation of the signal and background datasets, performing a
consequent randomization of the entire dataset. This key passages assured the impossibility
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of recognizing, a priori, a background event from a signal event, thereby making the dataset
suitable for training.

4.2 Feature Selection
The feature selection was performed using the mRMR method described in Section 3.1.1,
using 15 as the number of features to select from all the columns of the dataset. This number
was chosen as a compromise between having a high performance for the classification algo-
rithms and reducing the computation time and redundant information as much as possible.
To evaluate the stability of the feature selection method on the dataset, the Jaccard score
described in Section 3.1.2 was used. The dataset was split into 10 non-overlapping subsets,
and for each one the mRMR feature selection algorithm was applied to identify and record
the chosen features. The different sets of feature were used to compute the Jaccard score
according to equation 6 obtaining a result of J=1. This means that the same exact features
were selected for each subset, assessing the stability of the method used.
Figure 2 shows an overview of all selected features and their distributions highlighting signal
and background events.
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Figure 2: Distribution of the 30 features selected using the mRMR method. Light blue for
signal events and purple for background events.

4.3 Multivariance analysis

The multi-variance analysis was then performed on the dataset with the selected features.
The dataset was scaled with Standard Scaler and then split randomly between train and test,
with the proportion of 80% training and 20% test. Three different classification methods
were then used.
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4.3.1 Naive Bayes Classifier

The first method applied was the Naive Bayes Classifier described in section 3.2.1. Here
specifically, the Gaussian Naive Bayes algorithm was used, where the likelyhood of the
features is a priori assumed to be Gaussian. This simple algorithm gives an accuracy score
of a = 0.85 for a τc = 0.5. Figure 3 and Figure 4 show the ROC curve and the confusion
matrix.

Figure 3: ROC curve of the model. It rapresents the ture positive rate against false positive
rate for every threshold value τc.

Figure 4: Confusion matrix using a threshold value of τc = 0.5.
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4.3.2 KNN

The kNN method explained in section 3.2.2 was then applied. The number of nearest neigh-
bours was chosen to be k = 5 and euclidean metric was used to calculate the distance. In
order to avoid the bias due to the specific train-test split, cross validation was performed
with a number of subset equal to 5. The total accuracy was then computed as the mean
of the 5 different accuracy values with a final value of a = 0.96. The threshold value to
assign the label was chosen at τc = 0.5. Figure 5 and Figure 6 show the ROC curve and the
confusion matrix.

Figure 5: ROC curve of the model. It rapresents the ture positive rate against false positive
rate for every threshold value τc.

The high value of the area under the curve AROC = 0.98 indicates a very good performance
for the classifier.

Figure 6: Confusion matrix using a threshold value of τc = 0.5.
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4.3.3 Random Forest

The Random Forest Classifier was also applied to the dataset. The number of estimators
was set to 100, while the same number of subset n = 5 was used for cross validation. The
accuracy obtained was a = 0.96 using τc = 0.5. Figure 7 and Figure 8 are show the ROC
curve and the confusion matrix.

Figure 7: ROC curve of the model. It rapresents the ture positive rate against false positive
rate for every threshold value τc.

The ROC curve gives an area of AROC = 0.99. It is clear that the random forest classifier
performs better than the previous algorithms.
In the context of classification algorithms, a common practice has been to utilize a threshold
of τc = 0.5 to translate predicted probabilities into definitive class labels. Although intuitive,
a value of 0.5 is not always the best choice depending on the objective of the analysis.

Figure 8: Confusion matrix using a threshold value of τc = 0.5.
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Figure 9: Plot of the precision curve (blue) and the fβ curve (purple).

A useful way to pick the most functional threshold is to choose the one which minimizes
the fβ index defined according to the Equation 14. For a the fixed value of β = 0.1 the
behaviour of the index as a function of the threshold value, is almost identical to the one of
the precision index, as shown in Figure 9.
As shown in the plot, the value that maximizes the fβ is τc = 0.92. Figure 10 shows the
behavior for precision and recall as a function of the threshold.

Figure 10: Plot of the precision index (purple) and recall index (blue) as a function of
threshold value τc.

We see how τc = 0.92 guarantees a very high precision without decreasing significantly in
terms of recall. Finally, Figure 11 and Table 1 show the confusion matrix and the values for
precision, recall and accuracy for tc = 0.92.

13



Figure 11: Confusion matrix using a threshold value of τc = 0.92

Precision Recall Accuracy

1.00 0.47 0.74

Table 1: Performance metrics of the Random Forest classificator with τc = 0.92.

5 Conclusion
This analysis successfully demonstrates the utility of machine learning techniques in clas-
sifying neutrino events from the IceCube experiment’s Monte Carlo simulation data. By
applying the mRMR selection, we effectively reduced the feature space to a manageable
subset of highly informative features, ensuring a balance between relevance and redundancy.
This selection process was validated through the Jaccard index, which confirmed the stability
of our attribute selection approach against statistical fluctuations in the dataset.
The performance of three different classifiers, Naive Bayes, k-Nearest Neighbors, and Ran-
dom Forest, was evaluated. The Gaussian Naive Bayes classifier achieved an accuracy of
85%, demonstrating the fundamental capability of probabilistic models in this context. The
kNN classifier, with an optimal choice of k=5 and cross-validation, improved accuracy to
94%, showcasing the strength of distance-based methods in handling this dataset. Overall,
the Random Forest classifier peformed better than the other methods used, with a final
accuracy of 96% considering a τc = 0.5.
In conclusion, by setting the new threshold at τc = 0.92, despite a decrease in recall, we have
enhanced the algorithm’s ability to detect signal events effectively.
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