Fabio Cufino IMAPP

C++ stuff that I should already know

Now I'll start a little recap of the thing that I would like not to forget.

The constructs in a C++ program create, destroy, refer to, access, and manipulate

objects

* An object is a region of storage (i.e. memory)

° it has a type

o it has a lifetime

o it can have a name

A type identifies a set of values and the operations that can be applied to those

values

o C++ is a strongly typed language (mostly)

int

CS-M4-1

Arithmetic types

° integral types

— signed integer types: short int, int, long int, long long int

- unsigned integer types: unsigned short int, unsigned int, unsigned long int,
unsigned long long int

— character types: char, signed char, unsigned char,

— boolean types: bool

o floating-point types: float, double, long double

std::nullptr t
type of the null pointer nullptr
void

denotes absence of type information

With N bits, values are in the range (—2N-12N-1_1)
Pay attention to the negative numbers rapresentation

0111
0110
0101
0100
0011
0010
0001
0 | 0000
-1 1111
-2 | 1110
-3 | 1101
-4 | 1100
-5 | 1011
-6 | 1010
-7 | 1001
-8 | 1000

HNWD oo N

Typical size is 32 bits

Identifiers

An identifier is a sequence of letters

with a letter

(4 bytes)

(including

Identifiers are used to name entities in a program

Variables

The following identifiers are reserved

alignas
alignof
and
and_eq
asm
auto
bitand
bitor
bool
break
case
catch
char
char8_t
charl6_t
char32_t
class
compl
concept
const

consteval
constexpr
constinit
const_cast
continue
co_await
co_return
co_yield
decltype
default
delete

do

double
dynamic_cast
else

enum
explicit
export
extern
false

final
float
for
friend
goto

if
import
inline
int

long
module
mutable
namespace
new
noexcept
not
not_eq
nullptr
operator
or

or_eq
override
private
protected
public
register

reinterpret_cast

requires
return

short

signed
sizeof
static
static_assert
static_cast
struct
switch
template
this
thread_local

and digits,

throw
true

try
typedef
typeid
typename
union
unsigned
using
virtual
void
volatile
wchar_t
while
xor
Xor_eq

A variable is an identifier that gives a name to an object

int i;
i = 4321;

int j{1234};

i=7;

Literals

Memory

® ©® © 06

’4&1’
‘ 4321 ‘ ‘ 1234 |
‘ 1234 ’ ’ 1234 ’

starting

A literal is a constant value of a certain type included in the source code:

* integer
defined

std: :string

floating point -

character -

string e

boolean

* null pointer -

user-—

Provided by the C++ Standard Library
A compound (user-defined) type to represent a string of characters
An std::string can be initialized with a string literal, a sequence of escaped
or non-escaped characters between double quotes
"hello" "hello'\n'world" "hello "world""

\n means “newline”

The type of a string literal is not std::string

std::string corso{"Programmazione per la Fisica"};
corso = corso + "\nAnno Accademico 2023/2024"; \\WRONG

Flow Control

Algorithms

A finite sequence of precisely defined steps to solve a problem
Statements

Statements are units of code that are executed in sequence:
* expression statement ¢ compound statement or block ¢ declaration statement -

selection statement ¢ iteration statement ¢ jump statement

#include <iostream>

read a, b int main()
+ {
int b;
std::cin >> a >> b;
write int result{a + b};
reiult std::cout << result << '\n';
}

Expression statement

An expression followed by a semicolon (;)

An expression is a sequence of operators and their operands that specifies a

computation

The evaluation of an expression typically produces a result
Block
A sequence of zero or more statements enclosed between braces ({})
Declaration statement

A declaration statement introduces one or more new identifiers into a C++
program, possibly initializing them

o typically variables, but not only
CS-M4-1 4

A declaration of a variable in a block makes the variable of automatic storage
duration, unless otherwise specified
the corresponding object is automatically created each time the

declaration is executed
the corresponding object is automatically destroyed each time the
execution reaches the end of the block
A declaration should introduce only one identifier
A variable should be declared only in the moment it’s actually needed
A variable should be initialized at the point of declaration

There are very few exceptions, if any, to this recommendation

Scope

The scope of a name appearing in a program is the, possibly discontiguous, portion

of source code where that name is wvalid

and True if both operands are true
opl op2 | opl && op2

false false false
false true false
true false false
true true true

op2 is evaluated only if opl is true
or True if at least one operand is true

opl op2 | opl || op2

false false false

false true true
true false true
true true true

op2 is evaluated only if opl is false
not Operand's negation (or logical complement)
op lop

false true
true false

CS-M4-1 5

Double

64 bits, smallest values ~+107{-308}, largest values ~*107{308}
» Precision is about 16 decimal digits

Float

32 bits, smallest values =+107{-38}, largest values ~+10"{38}

» Precision is about 7 decimal digits

cmath

The cmath header includes many ready-to-use mathematical

functions

e Exponential

e Power

e Trigonometric
e Interpolation
e Hyperbolic

e Floating-point manipulation, classification and comparison

#include <cmath>

double x{:--};

std::sqrt(x);
std::pow(x, .5);
std::sin(x);
std::log(x);
std::abs(x);

A value of type Tl may be converted implicitly to a value of type

T2 in order to match the expected type in a certain situation

» Conversions can be explicit using static_cast

1 + static_cast<int>(2.3)

Mechanism exist to define implicit and explicit conversions involving user-defined

types

CS-M4-2 6

Data qualified as const is logically immutable. Data that is meant to be immutable

should be const.

int const x{1'000'000'000}; // or const int

std::cout << x + 32; // ok, read-only

X += 32; // error, trying to modify

int const y; // error, not initialized and not modifiable later

std::string const message{"Hello"};

std::cout << message + " Francesco"; // ok, read-only
message += " Francesco"; // error, trying to modify
std::string const empty_message; // ok! empty string

Functions

¢ A function declaration contains the essential information needed to invoke the
function “return-type function-name (parameter-list);

o If the declaration is followed by the actual block of statements (the
implementation of the function), it is also a definition return-type function-
name (parameter-list) {---}

* Note the block scope
° Each parameter in the parameter list is of the form type name opt
» type is mandatory
* name is optional
— in the declaration, but useful for documentation purposes

- in the definition if it’s not used

« If the function returns nothing, the return type is wvoid

int isqrt(int); // declaration

int count_words(std::string s) {:--- } // definition
double pow(double base, double exp); // declaration
void print(std::string); // declaration

int generate_random_number() {--- } // definition

¢ Within the function block, the return statement returns the result (and the

control) to the calling function
e For a function returning a non-void type return expression ;
e The result of expression must be convertible to the return type
e For a function returning void

return;

* At the end of the function, return; is optional.
A function needs to be declared/defined before it’s used
Recursive functions

A function can call itself, directly or indirectly

CS-M4-2 7

» called recursion

e Often an elegant alternative to a loop

int sum_n(int n)

{
// assume n >= 0
if (n == @) { // base case
return 0;
} else { // recursive case

return n + sum_n(n - 1);

¥

}

Function overloading

Multiple functions can share the same name but must have different parameter lists

(number and/or types).

» Compiler Behavior:
o The compiler selects the function that best matches the call, applying
implicit conversions when appropriate.
* Errors occur if no match or multiple equally valid matches exist.
* Return Type:

e The return type is irrelevant for function overloading.

void foo(int);

int foo(int, char);
bool foo(double);

int foo(std::string s);

e foo(@); — Calls foo(int)
e foo(@, '0'); - Calls foo(int, char)

e fo0(0.); — Calls foo(double)
o foo(std::string{}); — Calls foo(std::string)
0L); — Ambiguous, error

(
(

« fool

e foo('a'); - Calls foo(int)

o« foo("a"); — Calls foo(std::string)

Memory layout of a process

e A process 1is a running program
e When a program is started the operating system brings the contents of the

corresponding file into memory according to well-defined conventions

CS-M4-2 8

Stack

o Stack Allacatedl by ‘Cnmviler

— function local variables
— function call bookkeeping

o Heap
— dynamic allocation
o Global data
— literals and variables
— initialized and uninitialized (set to 0) Literals & Constants
o Program instructions Instructions
Functions and the stack
Stack
int isqrt(int n)
{
int i{1}; main
while (i * i < n) {
++i; aum 5
}
result ?
if (i *i>mn) {
__i;
} isqrt
return i;
} n 5
i 2
int main()
{ %rsp ——
int num;
std::cin >> num;
int result{isqrt(num)};

std::cout << result << '\n'; .
\a's The state of the stack just

before returning from isqrt

Pass by Value, Return by Value

Given a function

R F(T; py, -+, Tn pp) { --- return Ep; }

and a function call

Rr =F(E, -+, Ep);

e Each p; is initialized with the value of expression E;

o Every time the function is called a new p; is created, which gets
destroyed at the end of the function

o NB if E; is just a variable, p; is another object (a copy) and
changing it inside the function doesn't change the original object
corresponding to the variable

® r s initialized with the value of expression Eg

Example:

int (int a, int b) {
return a + b;

int () {
int x =5, y = 10;
int sum = (x, y);
return 0;

CS-M4-2

Hene:

CS-M4-2

Pass-by-value: Arguments are copied into function parameters.
Return-by-value: The return expression is copied to the caller’s variable.
Changes inside the function do not affect the original variables. This

provides isolation and ensures the integrity of the original arguments.

10

Passing by value may be inconvenient

Consider a function that increments an int object
void increment(?777 n) {
// ++n
}
int number{42};

increment (number) ;
// number == 43

NB The function does not return the new value; it modifies the passed object
in place

We cannot write void increment (int n), because the function would modify a

copy of the original object

Where in memory does a given object reside?

int i{4321};

int j{1234};
std::cout << &i;
std::cout << &j;
intx p{&i};
std::cout << &p;
intxx pp{&p};

p = &j;

intx q{p};

Where in memory does a given object reside?
0x0000 0Oxaa04 0xab00 Oxbadd _0xcd00 cb80 Oxffff

| ; ’o?bgggj { 4321 ‘]O?a560| ’ 1234 ‘ IQ;EdOO‘; ;
PP i p J q

Pointers and References in C++

1. Introduction to Pointers
Pointers are variables that store the memory address of another variable.
Declaring a Pointer

To declare a pointer, use the * symbol:

int num = 10;
int xptr = #

Accessing the Value via Pointer

To access the value at the address a pointer holds, use the dereference operator
e

CS-M4-3 11

std::cout << *xptr;

Changing Value through a Pointer

You can modify the variable's value by dereferencing the pointer:

*xptr = 20;
std::cout << num;

Passing a pointer

void increment(int* n) {
++(*n) ;

}

int number{42};
increment (¢number) ;
// number == 43

int count_words(std::string* s)
{

int count{0};

e XS oo

return count;

}

std::string text{ -'};
count_words (&text) ;

The caller takes the address of the object and passes it to the function

The function dereferences the pointer to get access to the object

Be careful not to dereference a null pointer

Const and pointers

std::string text{--'};
std::string* ptext{&text};

// ok, can read/modify name via *ptext

std::string const* cptext{&text}; // ok, can only read text via *cptext

std::string const text{-:-};
std::string* ptext{&text};

// error, else could modify text via *ptext

std::string const* cptext{&text}; // ok, can only read text via *cptext

2. Introduction to References

References are another name for an existing variable. They cannot be

reassigned after initialization.

Declaring a Reference

Use the & symbol to declare a reference:

int num = 10;
int &ref = num;

Accessing and Modifying Values

Accessing or modifying the reference

CS-M4-3

affects the original variable:

null or

12

std::cout << ref;
ref = 20;
std::cout << num;

Passing bt reference
void increment(int& n) {
++n;
}
int number{42};

increment (number) ;
// number == 43

There is no difference in the caller compared to pass-by-value
There is no difference in the body of the function compared to pass-by-value

The only visual clue is in the parameter declaration
Const and reference

std::string text{.--};
std::string& rtext{text}; // ok, can read/modify text via rtext
std::string const& crtext{text}; // ok, crtext is a read-only view of text

std::string const text{---};
std::string& rtext{text}; // error, else could modify text via rtext
std::string const& crtext{text}; // ok, can only read text via crtext

int count_words(std::string const& s)
{

// this function can only read from s

3. Key Differences Between Pointers and References

Aspect Pointer Reference

Nullability Can be null Cannot be null

Reassignment Can point to different Must be initialized and cannot be
variables reassigned

Syntax * for dereferencing Access like a regular variable

4. Example of Using Both in a Function

In this example, we'll use pointers and references to modify values inside a

function.

#include <iostream>

void (int *ptr) {
*xptr += 5;

}

void (int &ref) {

CS-M4-3

Mobile User

ref += 5; // Directly modifies the value of the referenced variable

int main() {
int numl = 10, num2 = 10;

updateWithPointer(&numl) ; // Passing by pointer
updateWithReference(num2); // Passing by reference

std::cout << "After updateWithPointer: " << numl << std::endl; // Output: 15
std::cout << "After updateWithReference: " << num2 << std::endl; // Output: 15

return 0;

In this example:

e updateWithPointer takes a pointer, s*ptr, to modify numl.

e updateWithReference takes a reference, ref, to modify num2.

e For input parameters

o If the type is primitive, pass by wvalue

int isqrt(int n); // good
int isqrt(int const& n); // bad! pessimization

» Otherwise pass by const reference
int count_words(std::string const&);

e For output parameters, prefer to return a value or pass by non-const reference

int read_from_cin(); // may be more difficult to overload for other types
void read_from_cin(int& n);

¢ For input-output parameters, pass by non-const reference

void to_lowercase(std::string& s);

Returning a reference

A function can return a reference only if the referenced object survives the end
of the function
o Otherwise, in the caller, the reference would refer to an object that doesn’t

exist anymore

In particular do not return a reference to a function local variable

// bad // acceptable

int& add(int a, int b) { int& increment(int& a) {
int result{a + b}; ++a;
return result; return a;

} }

Useful to chain multiple function calls on the same object

CS-M4-3 14

std::string& to_lower(std::string& s) { + - - ; return s; }

std::string& trim_right(std::string& s) { - - - ; return s; }
std::string& trim_left(std::string& s) { + - - ; return s; }
std::string s{- - -};

trim_left(trim_right(tolower(s)));

for (range-declaration : range-expression) statement

o Simplified form of a for loop, to iterate on all the elements of a range
(sequence), such as a string of characters
» Execute repeatedly statement for all the elements of the range
¢ range-declaration declares a variable of the same type of an element of the
range
*» Can (and should) be a (const) reference

¢ range-expression represents the range to iterate over

std::string s{"Hello!"};
for (char& c : s) {

c = std::toupper(c);

}

for (int i : {1, 2, 3, 4, 5}) {

std::cout << i << 2

¥

Auto

Let the compiler deduce the type of a variable from the initializer, i.e. from the

expression used to initialize the object

» auto never deduces a reference

e auto preserves constness of references

Enumerations

An enumeration is a distinct type with named constants called enumerators.
2. Scoped Enumerations (enum class):

- Enumerators are specified with the name of the enumeration and the scope-
resolution operator (::), e.g., Operator::Plus.

- Default values:

- The first enumerator has the value 0 by default.

- Subsequent enumerators increment by 1 unless explicitly set.

- Explicit values can be assigned, e.g., Plus = -2.

3. Underlying Type:

CS-M4-3 15

- By default, the underlying type is int.

- It can be changed, e.g., enum class byte : unsigned char { }; .

- Values of the underlying type are valid enumeration values.

4. Type Conversion:

- Conversion to the underlying type requires explicit casting, e.g., int i =
static_cast<int>(Operator::Plus); .

5. Unscoped Enumerations:

- No class keyword, e.g., enum Operator { Plus, Minus }; .

- Enumerator symbols are visible in the enclosing scope (no need for ::).

- Implicit conversion to the underlying type is allowed.

- Use scoped enumerations for better type safety and clarity.

The switch statement transfers control to one of multiple statements, depending on

the value of a condition

double compute(char op, double left, double right) {
double result;

switch (op) {

case '+': result = left + right;
break;

case '/': result = (right != 0.) ? left / right : 0.;
break;

default: result = 0.;
}

return result;

}

The condition is an expression whose evaluation gives an integral or enumeration

value

¢ Cannot switch on strings, for example

o Typically each statement is followed by a break statement, to jump after the
switch, otherwise control falls through the next instruction, even if this is

part of a statement introduced by another labe

Data abstraction

The C++ language has a strong focus on building lightweight data abstractions

CS-M4-3 16

The source code can use terminology and notation close to the problem domain,
making it more expressive
There is little (if any) overhead in terms of space or time during execution

Class and struct are the primary mechanism to define new compound types on top

of fundamental types.
Let’s introduce a type to represent complex numbers

We can pass/return Complex objects to/from functions, take pointers and

references,

struct Complex { double norm2(Complex c) {
double r; // data member (field) return c¢c.r * c.r + c.i * c.i;
double i; }
I8
double norm2(Complex const& c) {
double norm2(Complex c); return c.r * c.r + c.i * c.i;
Complex sqrt(Complex c); }
Complex cl: -} ® A Complex is composed of two
double n{ norm2(c) };
Complex c2{ sqrt(c) }; doubles
[}
Complext cric}; // referemce The . (dot) operator aIIovys to
Complex* cp{&c}; // pointer access a member of an object of
r i class type (such as a struct)
|1 [2 | |

It’s possible to define operations on user-defined types

struct Complex {
double r;
double ij;

};

bool operator==(Complex const& a, Complex const& b) {
return a.r == b.r && a.i == b.i;

}

Complex operator+(Complex const& a, Complex const& b) {
return Complex{a.r + b.r, a.i + b.i};

}

c2 = cl // generated by the compiler, if used
cl == c2

cl + c2

Z=2zZ % zZ+ C

Imagine to change the Complex type to use the polar form

struct { double rho; double theta; I};

As a consequence, all client code has to change

double (Complex const& c) { return c.rho * c.rho; }

CS-M4-3 17

Changing the internal representation (e.g., from Cartesian to polar coordinates in
struct Complex) requires modifying all client code.
- Some combinations of data (e.g., (p,6) with invalid p<0 6 not in (0,2m) might

not be valid.

Desired Solution:
- Increase isolation between client code and internal representation.

- Enforce internal relationships (class invariants) between data members.
Encapsulation

The internal representation of data should be considered an implementation detail

and hidden from clients.

Manipulation of objects should be done via a well-defined function-based
interface.

2. Implementation:

- Declare data members (x, 1) as private.

- Provide public member functions (methods) for interaction.

3. Naming Convention:

- Use special naming conventions for data members (e.g., _suffix or m_prefix).

Example:

#include <stdexcept> // For exceptions

class Complex {
private:

double r_;

double i_;

public:
... constructor...

void setReal(double real) {

if (real < 0) {
throw std::invalid_argument("Real part cannot be negative");

A class can have a special function, called constructor, which is called to

initialize the storage of an object when it is created.

CS-M4-3 18

o It should initialize all data members, in order to establish the class

invariant

Best Practices:
- Use the member initialization list to initialize data members in the order they

are declared.

Example:
Complex(double x, double y) : x{x}, i{y} { }

» Avoid performing additional logic in the constructor body if it can be done in
the initialization list.

» Data members are initialized in the order of declaration and should preferably
be initialized in the member initialization list

* The constructor’s name is the same as the class name

class Complex {

private:
double r_;
double i_;

public:
Complex(double x, double y) // no return type

r_{x}, i_{y} // member initialization list

{ /% nothing else to do */ }

};
Complex c{1., 2.}; // or (1., 2.)

e For a class, private is the default and can be omitted

o Member functions that don’t modify the object should be declared const

* A class can have multiple constructors

* A data member can be given a default initializer, which is used if the member

is not explicitly initialized in the called constructor

class Complex {
double r_{0.};
double i_{0.};

public:
Complex(double x, double y) : r_{x}, i_{y} {}
Complex(double x) : r_{x} {} // i_ initialized with ©
Complex() = default; // r_ and i_ initialized with @
i

Complex c1{1., 2.};

CS-M4-3 19

Complex c2{1.}; // meaning {1., 0.}
Complex c3; // meaning {0., 0.}

Pointers and data structures

e address-of operator: &

° Given an object it returns its address in memory

* dereference operator: x

° Given a pointer to an object it returns a reference to that object

* structure dereference operator: -—>
° Given a pointer to an object of class/struct type, it returns a reference to a

member of that object

struct S {
int n;
void f();
5
SNGIERENY
Sk p = &q;

p—>n; // equivalent to (*p).n
p—>f(); // equivalent to (*p).f()

Exceptions
Exceptions provide a general mechanism to:
e notify the occurrence of an error in the program execution,

typically when a function is not able to accomplish its task, i.e. to satisfy it

post-condition

* using a throw expression

class Rational

{
private:
int n_;
int d_;
public:
Rational(int num = @, int den = 1) : n_{num}, d_{den}
{
if (d_ == 0) {

CS-M4-3

S

20

throw std::invalid_argument("Denominator cannot be zero");

An exception is an object

o After being raised (thrown), an exception is propagated up the stack of
function calls until a suitable catch clause (handler) is found

¢ If no suitable handler (i.e. one compatible with the type of the exception) is
found, the program is terminated

auto functionl() {

try {
- // this part is executed
throw E{};
- // this part is not executed

} catch (E const& e) {
- // use e —> // manage the error, e.g. log a message on stdandard error

¢ An exception is typically raised by a constructor to inform that it is not
able to properly initialize the object

Templates

Let’s consider again the Complex class

class Complex {
double r;
double i;

public:

Complex(double x = double{}, double y = double{}) : r{x}, i{y} {}
double real() const { return r; }

double imag() const { return i; }
b

What if we want float members?

CS-M4-3 21

class Complex { class Complex {

double r; float r;
double ij; float i;
public: public:
Complex(Complex (
double x = double{} float x = float{}
, double y = double{} , float y = float{}
) or{x}, i{y} {3) or{x}, i{y} {3
double real() const { return r; } float real() const { return r; }
double imag() const { return i; } float imag() const { return i; }
}; }

We can transform Complex into a template, with the floating-point type a parameter
of that template

template<typename FP> // or, template<class FP>
class Complex {

private:
FP r;
FP 1i;

public:
Complex(FP x = FP{}, FP y = FP{}) : r{x}, if{y} {}
FP real() const { return r; }
FP imag() const { return i; }
3

Now we also have to specify the FP

Complex c; // error
Complex<double> d; // instantiation of a Complex<double> type
Complex e{1.,1.}; // Complex<double> deduced

The C++ Standard Library

How can we guarantee that in a program composed of thousands of files, written by
thousands of people, using third-party libraries, there are no conflicts between

identifiers?

e Namespaces are a mechanism to partition the space of names in a program to

prevent such conflicts

// in <vector>

namespace std {
template<class T> vector {--- };

CS-M4-3 22

The standard library contains components of general use

o containers (data structures)
° algorithms

° strings

° input/output

c mathematical functions

o random numbers

o regular expressions

o concurrency and parallelism

o filesystem

A program often needs to manage collections of objects
° e.g. a string of characters, a dictionary of words, a list of particles, a

matrix,
A container is an object that contains other objects
std: :vectorT

Dynamic container of elements of type T
its size can vary at runtime

layout is contiguous in memory

#include <vector>

std: :vector<int> a; // empty vector of ints
std: :vector<int> b{2}; // one element, initialized to 2
std: :vector<int> c(2); // two elements (!), value-initialized (0 for int)

std::vector<int> d{2,1}; // two elements, initialized to 2 and 1
std: :vector<int> e(2,1); // two elements, both initialized to 1

auto f = b; // make a copy, f and b are two distinct objects
== b; // true

The size method gives the number of elements in the vector
The empty method tells if the vector is empty
operator[] gives access to the ith element

The push back method adds an element at the end of the vector

vec. (-2);
vec. (0)

Iterators and ranges
An iterator is an object that indicates a position within a range

A container, such as a vector, is a range

Ranges are typically obtained from containers calling methods begin and end

CS-M4-3

23

std::vector<int> v {-:-};
auto first = v.begin(); // std::vector<int>::iterator
auto last = v.end(); // std::vector<int>::iterator

¢ Syntactically, operations on iterators are inspired by pointers

Erese

* The erase method removes the element pointed to by the iterator passed as

argument (must not be end())

// remove the central element
auto it = v.begin() + v.size() / 2; // iterator to the middle element
v.erase(it);

» The erase method can remove a range, passing two iterators

// erase the 2nd half of the vector
auto it = v.begin() + v.size() / 2; // iterator to the middle element
v.erase(it, v.end()); // size ~halved here

In general, iterators pointing to erased elements are not valid anymore

o For a vector, iterators pointing to elements following the erased one are also

invalidated, including the end iterator

v.erase(it);

*xit; // undefined behaviour (UB)
++it; // UB, be careful in loops
it =---; // ok

Insert

The insert method inserts an element before the position indicated by an iterator

// insert the value 42 in the middle of the vector
auto it = v.begin() + v.size() / 2;
v.insert(it, 42); // size increased by 1

Array (N, T)
| std::array<T, N>
#include <array>

// 2 ints, uninitialized

CS-M4-3 24

std::array<int,2> a;

// 2 ints, initialized to 1 and 2
std::array<int,2> b{1,2};

// 2 ints, value-initialized (@ for int)
std::array<int,2> c{};

// 2 ints, initialized to 1 and 0
std::array<int,2> d{1};

// make a copy
auto e = b;
assert(e == b);

* he size method gives the number of elements in the array (which corresponds to

N)
» operator[] gives access to the ith element
* begin, end, empty, front, back methods

° No push back or insert, the size is fixed.

Algorithms

e Generic functions that operate on ranges of objects

e Implemented as function templates
Example:

« Sum all the elements of a container cont of ints

int sum {0};

for (auto it = cont.begin(), last = cont.end(); it !'= last; ++it) {
sum += xit;

This is better:
auto sum = std::accumulate(cont.begin(), cont.end(), @); // better
Find an element equal to val in a container cont

auto it = cont.begin();
auto const last = cont.end();

for (; it != last; ++it) {
if (%it == val) {

CS-M4-3

25

break;

—

]

This is better:

auto it = std:: (cont. (), cont. (), val);

Inputlterator

// InputIterator (find) . .
read, increment, comparison

while (first != last && !(*first == value)) ++first;

// OutputIterator (generate_n)

Outputlterator

write, increment

for (; n > 0; ++first, --n) *first = gen();

// ForwardIterator (generate)

for (; first != last; ++first) *first = gen();

Forwardlterator

multiple passes

// ForwardIterator (adjacent_find)
auto i = first;
while (++i !'= last) ---
Bidirectionallterator
// Bidirectionallterator (reverse) decrement
if (first == --last) break;
// RandomAccessIterator (reverse) RandomAccesslterator
for (; first < --last; ++first) --- random access

Examples of algorithms

Non-modifying all_of any_of for_each count count_if
mismatch equal find find_if adjacent_find
search

Modifying copy copy_if fill generate transform
remove replace swap reverse rotate shuffle
sample unique

Partitioning partition stable_partition ...
Sorting sort partial_sort nth_element ...
Set includes set_union set_intersection ...
Min/Max min max minmax clamp
Comparison equal lexicographical_compare

Numeric iota accumulate inner_product partial_sum
adjacent_difference reduce

Algorithms in action:

std::array a {23, 54, 41, 0, 18};

std::sort(std::begin(a), std::end(a));

// sum up the array elements, initializing the sum to 0
auto s = std::accumulate(std::begin(a), std::end(a), 0);

// append the partial sums of the array elements into a vector
std::vector<int> v;
std::partial_sum(std::begin(a), std::end(a), std::back_inserter(v));

auto p = std::inner_product(std::begin(a), std::end(a), std::begin(v), 0);

// find the first element with value 42, if existing
auto it = std::find(std::begin(v), std::end(v), 42);

Why using standard algorithms

*They are correct

*They express intent more clearly than a raw for/while loop
*They are efficient

o They give computational complexity guarantees

o How fast do they run? how much additional memory do they need?

*They enable easy access to parallelism
Algorithms and functions
Notes with Code Snippets

e find Algorithm:

template <class Iterator, class T>

Iterator find(Iterator first, Iterator last, const T& value) {

for (; first !'= last; ++first)
if (kfirst == value)
break;

return first;

auto it = find(v.begin(), v.end(), 42);

¢ Searches for 42 in the range [v.begin(), v.end()).

¢ Returns an iterator to the found element or v.end() 1f not found.

find if Algorithm:

template <class Iterator, class Predicate>

Iterator find_if(Iterator first, Iterator last, Predicate pred) {

for (; first !'= last; ++first)
if (pred(«first)) // unary predicate
break;

CS-M4-3

27

return first;

}
bool (int n) { return n < 42; }
auto it = (v. (), v. (), 1t42);

Uses a predicate 1t42 to search for the first value less than 42.

Algorithms like find and find if are versatile for searches in ranges. Functions

or lambdas enable custom logic within algorithms for flexibility.

A mechanism to define something-callable-like-a-function

® A class with an operator ()

struct LessThan42 {

auto 1t42(int n) auto operator() (int n) const
{ {
return n < 42; return n < 42;
} }
};

LessThan42 1t42{};
// or: auto 1t42 = LessThan42{};

auto b = 1t42(32); // true auto b = 1t42(32); // true
std: :vector v {61,32,51}; std::vector v {61,32,51};
auto it = std::find_if(auto it = std::find_if(
v.begin(), v.end(), v.begin(), v.end(),
1t42 1t42 // or directly: LessThan42{}
); // *it == 32); // *it == 32

A function like 1t42 is straightforward but less flexible.

A function object (LessThan42) allows additional customization, such as

maintaining state or using templates for more complex conditions.

A function object, being an instance of a class, can have state. This allows you
to encapsulate additional data (state) within the function object and use it in

the callable operator ().
Example Breakdown:

1. Class Definition:

class {
int m_;
public:
explicit (int m) : m_{m} {}
auto operator()(int n) const {
return n < m_;

CS-M4-3 28

IE

e m: This is a member variable that stores the threshold value.

e Constructor: Accepts an integer m to initialize the state.

e operator(): Takes an integer n as input and compares it with the stored
threshold m.

2. Example Usage:

a. Creating Stateful Instances:

LessThan 1t42{42}; // State: m_ = 42
auto bl = 1t42(32); // true, because 32 < 42
// Alternative syntax: auto bl = LessThan{42}(32);

LessThan 1t24{24}; // State: m_ = 24
auto b2 = 1t24(32); // false, because 32 >= 24
// Alternative syntax: auto b2 = LessThan{24}(32);

e Here, 1t42 and 1t24 are separate objects with different states (m = 42 and m =

24 respectively).
e They behave differently depending on their state when called with the same input

(32) .

b. Using in Algorithms:

std::vector v {61, 32, 51};

// Search using 1t42 (threshold 42)
auto il = std::find_if(v.begin(), v.end(), 1t42);
// *il1l == 32, because 32 is the first element < 42

// Search using 1t24 (threshold 24)
auto i2 = std::find_if(v.begin(), v.end(), 1t24);
// 12 == v.end(), because no element is < 24

e 1t42: The first element satisfying n < 42 is 32, so *il == 32.

e 1t24: No element satisfies n < 24, so the iterator 12 equals v.end().
Key Takeaways:

¢ The LessThan class is stateful because each instance stores a threshold value
(m).

o Different instances (1t42, 1t24) can have different behaviors based on their
States.

» Function objects like LessThan can be directly passed to STL algorithms (e.g.,

std::find if), allowing for concise and expressive code.

CS-M4-3 29

Here an example form the standard library

An exam pIe from the standard Iibrary the standard library includes a part providing
support for the random number generation

#include <random>

// random bit generator
std::default_random_engine eng;

// generate N 32-bit unsigned integer numbers
for (int n = 0; n != N; ++n) {

std::cout << eng() << '\n';
}

// generate N floats distributed normally (mean: 0., stddev: 1.)
std: :normal_distribution<float> dist;
for (int n = 0; n != N; ++n) {
std::cout << dist(eng) << '\n';
}

// generate N ints distributed uniformly between 1 and 6 included
std::uniform_int_distribution<> roll_dice(1, 6);
for (int n = 0; n != N; ++n) {

std::cout << roll_dice(eng) << '\n';

}

C++ Lambda expression allows us to define anonymous function objects which can

either be used inline or passed as an argument.

They are more convenient because we don't need to overload the () operator

a separate class or struct.

Example:

#include <iostream>
using namespace std;

int () {

auto greet = [1() {
cout << "Hello World!";
BE
();

return 0;

Lambda Function as Argument in STL Algorithm
A concise way to create an unnamed function object.
Use Cases: Ideal for actions/callbacks in algorithms,

Example:

CS-M4-3

in

or frameworks.

30

Here you understand why they are so important

std::find_if(container.begin(), container.end(), [l1(int n) {
return n < 42;

)

really easy to write.

struct LessThan42 {
auto operator()(int n) const {
return n < 42;

g

std::find_if(container.begin(), container.end(), LessThan42{});

* What is the LessThan42? Why not a simple function?

cpp © Copy

struct MultiplyByFactor {
int factor;
MultiplyByFactor(int f) : factor(f) {}
int operator()(int n) const {
return n *x factor; // Factor is stored in the struct

}
i

auto multiplier = MultiplyByFactor(3);
std::cout << multiplier(4); // Outputs: 12

« A regular function cannot “remember” a factor unless you explicitly pass it as an argument every time. The functor

stores the state (factor) internally.

Lambda Closure

* Definition: A lambda expression produces an unnamed function object,

a closure.
Components:

» operator () defines the body of the lambda.

o Captured local variables become data members of the closure.
Example:
auto v = 42;

auto 1t = [vl(int n) { return n < v; };

bool result = 1t(5); // true
Equivalent Functor Implementation:

class SomeUniqueName {
int v;

CS-M4-3

Here instead the equivalent without the lambda function:

also called

31

public:
explicit SomeUniqueName(int v) : v(v) {}
auto operator()(int n) const {
return n < v;

e

auto 1t = SomeUniqueName{42};
bool result = 1t(5);

Lambda Capture
Definition: Capturing variables from the surrounding scope in a lambda.

Capture Options:
e []: Capture nothing.

Capture all variables by wvalue.

]

]: Capture all variables by reference.

]: Capture k by value.

k]: Capture k by reference.

=, &k]: Capture all by value, except k by reference.
&, k]: Capture all by reference, except k by value.

Example:

int v = 3;
auto 1 = [&v]() { v =5; };
1();

std::cout << v;

Lambda: Const and Mutable

Default Behavior: A lambda is const by default.

Variables captured by value are not modifiable.

Mutable Lambdas: Declared with mutable to allow modification of captured

variables.

The parameter list is mandatory.

Explicit return type (if present) comes after mutable.

Compilation model

Stuff that I'm supposed to know

CS-M4-3

32

CMake is an open-source, cross-platform family of tools designed to build,

test and package software

Build targets, dependencies, options, ...are expressed declaratively in a file

called CMakeLists.txt

cmake_minimum_required (VERSION 3.16)

project(mandelbrot_sfml VERSION 0.1.0)

find_package(SFML 2.5 COMPONENTS graphics REQUIRED)

string (APPEND CMAKE_CXX_FLAGS " -Wall -Wextra")
add_executable(mandelbrot_sfml main.cpp)
target_link_libraries(mandelbrot_sfml PRIVATE sfml-graphics)

Static Data and Functions

CS-M4-3

® Objects can be created outside a function block

#include <random>
std::default_random_engine eng;

auto seed_rand(int s) { eng.seed(s); }
auto get_rand() { return eng(); }
auto print_rand() { std::cout << get_rand(); }

® eng above is a global variable

® They have static storage duration, i.e. they live
for the whole program duration

® They live in the Static Data memory segment

® They are initialized before main is called and
destroyed after main has finished

Stack
Allocated by Compiler

Literals & Constants

Instructions

® One useful application of non-local variables is to define

constants, possibly inside a namespace

namespace std::numbers {
inline constexpr double e
inline constexpr double pi 000 8

® inline means that there is only one object in the whole program

(like for function definitions)
o to be used if the definitions are in a header file

® constexpr guarantees that the initialization can be done at

compile time

o possibly through the execution of a constexpr function (not further

discussed)
o it implies const

Of course constants can be defined locally as well

33

Explicit Memory Management

CS-M4-3

A process is a running program

When a program is started the operating system brings the contents of the

corresponding file into memory according to well-defined conventions

Stack
(¢] St ac k Alloca!edl by lCompIIer

— function local variables
— function call bookkeeping
o Heap

— dynamic allocation
Global data

— literals and variables
— initialized and uninitialized (set to 0)

Program instructions

[e]

o

it’s not always possible or convenient to construct objects on the stack,
where they would be destroyed at the end of the function that created them
An object (array of objects) can be constructed on the free store (heap)

new expression (for an array: new [])
The lifetime of an object (array of objects) on the heap is explictly managed
by the developer

delete expression (for an array: delete [])

Stack Heap

auto fun()
{
int n {1234};
int* p = new int{5678};

delete p;

delete p gives the area on the ofaano
heap back to the system

delete p does not modify p
After delete p, the only safe
operation on p is an
assignment

o] p = e e ;
if p is nullptr, delete pis
well defined and does nothing

34

Contiguous sequence of homogeneous objects in memory

0x0000 0xaa00 Oxab99’#’#Q§§b04.-'0xab68*—‘*ﬁx§b0c Oxffff
. | oxab0c | | 124 | esa | 789 |
b a[o] a[1] a[2]

int a[3] = {123, 456, 789}; // int[3], the size must be a constant
// and can be deduced from the initializer

++a[0];
a[3]; // undefined behavior
// "arrays decay to pointers at the slightest provocation"
auto b = a; // int*, size information lost
assert(b == &al[0]);
++b; // increase by sizeof (int)
assert(b == &al1]);
*b = 654;
b += 2; // increase by 2 * sizeof (int)
*b; // undefined behavior
if (b==a+3) { ...} // ok, but not more than this
Stack Heap
auto fun() pl2] 56
{
1
int a[3] {12, 34, 56}; e
int* p = new int[3] {12, 34, 56}; plo] .12
e 0%ed80
} fun
P| Oxedso <
al[2] 56
al1] 34
a[0] 12

The main (special) function is the entry point of a program

It can have two forms

o int main() {---}

° int main(int argc, char* argv[]) {---}

If there is no return statement, an implicit return 0; is assumed

° 0 means success, different from 0 means failure

argc is the number of arguments on the command line, argv is an array of C-
strings representing the arguments

° argv[0] is (usually) the name of the program

o argvlargc] is nullptr

Dynamic polymorphism

CS-M4-3

36

Memory matters

e GitHub: https://github.com/giacomini/cshep2024

This is a typical simplified cpu and system layout

CPU * Typical, simplified,
Core Core Core Core CPU and system
1-L1 [D-L10§ 1-L1 [D-L1f 1-L1 [D-L1f I-L1 |D-L1 layout

- Non Uniform

Memor Aces

> —— e — <> Memory
I -

A ¥ A
interconnect
Ve A Y

|
v
C < » CPU
———— EeEEEEEE . . emoy
| ' —
I |

The ideal situation can be approximated with a hierarchy of different memory

types. This is a plot of the access time and the various levels

50 ‘* W

3rd-level cache t m

* Memory is organized in a hierarchy (e.g., CPU registers, cache levels, main

memory, secondary storage).

* The highest level (like CPU cache) is the fastest and closest to the processor
but has less storage.

e Hit: When data is found in the highest level of memory (e.g., cache). This is
fast, and the hit rate measures the fraction of accesses that are hits.

e Miss: When data isn’t found in the highest level. The system fetches it from

lower levels, which takes longer (referred to as miss penalty).

When a miss occurs, data is transferred from a lower level (e.g., main memory) to
a higher level in blocks called cache lines.

Locality Principle

1. Definition:

» The principle states that programs tend to access memory locations in

CS-M4-4 37

https://github.com/giacomini/cshep2024

predictable patterns, which can be exploited to optimize memory hierarchy.

Data Locality:

N

* Example in the code (strlen function):
¢ The variable len is accessed multiple times, showing temporal locality.

e The array str is scanned sequentially, showing spatial locality.

* In a limited time interval a program accesses only a small part of its whole

address space
Temporal locality

» Memory locations recently accessed tend to be accessed again in the near

future

* e.g. instructions and counters in a loop
Spatial locality

» Memory locations near those recently accessed tend to be accessed in the near

future

* e.g. sequential access to instructions in a program or to data in an array

The efficiency of a program does not depend only on the computational complexity

of an algorithm...

e Even an algorithm with better theoretical complexity might perform worse in

practice if it does not use the memory hierarchy efficiently.

Let's see how to help the program to have reasonable efficiency

How do you now the size in bite o the different types? sizeof

bool

char

short

int

long

long long
float
double

long double
void*

0 B ® OO AN R R

N
® o

Definition: Alignment constraints mean that variables of a certain type must be

stored at memory addresses that are multiples of their size.

CS-M4-4 38

For example, an int

multiples of 4.

(typically 4 bytes) must be stored at addresses that are

Memory access 1is faster when the CPU reads from addresses aligned to the type's

size.

- To ensure this,

struct.
Example:
struct S
char cl1;
int n;
char c2;
I
static_assert(sizeof(S) == 12);
char cl: Takes 1 byte.
int n:

added after cl.

char c2: Takes 1 byte,

Resulting layout:

- Total size is 12 bytes: 1 (cl) + 3

Alternative design techniques

(padding)

Takes 4 bytes but must start at a multiple of 4,

the compiler often adds padding bytes between variables in a

so 3 padding bytes are

but padding is added after it to make the struct's
total size a multiple of the largest alignment

(here, 4 for int).

+ 4 (n) + 1 (c2) + 3 (padding).

* Structure of Arrays instead of Array of Structures

struct Particle {
Vec position;
Ext ext;
void translate(Vec const& t) {
position += t;
}
1

using Particles = std::vector<Particle>;

Particles

the primitive types

CS-M4-4

Particles

struct Particles {
std: :vector<Vec> positions;
std::vector<Ext> exts;

void translate(Vec& position, Vec const& t) {
position += t;

}

Positions Vec |l Vec |l Vec |l Vec [l Vec

ST

m
X

o3
@

=
t

The technique can be brought to the extreme, down to

39

Computer architecture
performance

o

Memory

data
+
instructions

The basic operation that every

instruction and the address in

evolution and the

CPU

Arithmetic.
Logic Unit
[|
[Conrol

(PU) has to process is called

memory containing the instruction is saved.

Processing Unit

A Program Counter (PC) holds the address of the next instruction

fetch: the content of the memory stored at the address pointed by the PC is

loaded in the Current Instruction Register

(CIR) and the PC is increased to

point to the next instruction’s address

decode: the content of the CIR

need to be performed

execute:

Graphically explained:

For a long time the main contribut

is interpreted to determine the actions that

an Arithmetic Logic Unit performs the decoded actions

Fetch next instruction
from memory to CIR
Increment PC

Execute instruction in
CIR

n
yes

ion to the gain in microprocessor performance

was the increase of the clock frequency.

Historically, increasing clock

processor performance .

frequency was the primary way to improve

This allowed application performance to double every 18 months without

modifying software.

End of the Trend:

CS-M4-5

40

Around the mid-2000s, physical limits (like heat dissipation and power

consumption) stopped the rapid increase in clock speed.

Performance gains now require architectural innovations rather than simply
faster processors.

Systems evolved in different ways

Increased number of Processing Units
More complex control
Pipelining
Superscalar execution, hardware threading

Out-of-order execution, branch prediction, prefetching, speculative
execution

Instruction-level parallelism

Deeper memory hierarchy

Software traditionally written for serial computation

the sequence of instructions that forms the problem is executed by one

Processing Unit (PU)

every instruction has to wait for the previous one to be completed before
its execution can start

at any moment in time, only one instruction may execute

Problem

ls PU

You would like to move from a sequence stream of instructions to this new

situation:

In parallel computation, i1if two instructions have no data dependency, they can

be executed in parallel, at the same time, by two PUs

Problem

THE
EHE

How much can you push the parallelization?

The maximum theoretical throughput is limited by Amdahl's Law:

CS-M4-5

Every program contains a serial part
Only one PU can execute the serial part

The speedup using p PUs is given by

T
S(p) = =
(T,

If f is the fraction of the program that runs serially, the parallel

execution time is given by

1—)T
Tp:fTs—f—%

The speed-up becomes

Ts 1
S, f) = ——a7m 7 7 = Smax(f)
Amdahl’s Law

20.00

1]

Parallel Fraction
50% ——
75%
90% —
95%

16.00

14.00

12.00

/

Speedup
\

L—1
2.00 %Z/
0.00 |

N ¥ o« «

39.

NS P © o <
< 8§ 1B o= &
- & b oS <

4096
32768

65536-

of Processing Units

Mitigating Amdahl's Law: Gustafson's Law

Amdahl’s Law assumes that a problem can be split into a number of

independent chunks n that can be processed in parallel and that this number

is fixed.

Many times, the increase in the size of a problem does not correspond to a
growth of the sequential part:

Increasing the size of the problem does not change the time spent

executing the sequential part, and only affects the parallel portion.

Let f(n) be the sequential code fraction of the program:
S(n) = f(n) +p[1 — f(n)]

f(n) decreases to 0 as n approaches infinity.

The maximum speedup 1s then given by:

Smax = lim S(n) =p

n—oo

It's still worth learning parallel computing: computations involving

arbitrarily large data sets can be efficiently parallelized!

embarrassingly parallel problems

CS-M4-5

42

Problems where a large problem can be divided into many independent tasks that
can be executed in parallel without needing to communicate with each other.

Each task y; is computed as a function fij(z;), with z; being its independent input.

Independence of Subtasks: Each computation y; = fi(z;) is completely
independent of the others, making parallelization straightforward. There’s
no data sharing or dependency between xo,Z1,...,Z8
High Parallelism: Tasks can be distributed across multiple processors or
nodes, achieving maximum utilization of computational resources.
Examples:
Linear Algebra: Matrix-vector multiplication or diagonal element
computations.
Image Processing: Applying filters or transformations pixel-by-pixel.
Monte Carlo Simulation: Running independent simulations to estimate
probabilities.
Cryptomining: Hash computations for each candidate solution.
Weather Forecasting: Modeling distinct geographic regions independently.
Software Compilation: Compiling files in a project independently if

there are no dependencies.

Here some terminology

Granularity: size of tasks

Scheduling: order of assignment of tasks

Mapping: assignment of tasks to a PU

Load balancing: the art of making the computation of multiple tasks end at
the same time

Barrier: a checkpoint at which all the parallel workers should wait for the
last one

Speedup: ratio between the time of the serial application and the time of
the parallel application

Efficiency: ratio of the speedup and the number of PUs

Race condition: When the result of execution depends on sequence and/or
timing of events. Result could be incorrect if this is not taken in
consideration

Critical section: Piece of code that only one worker at a time can execute

CS-M4-5 43

Organize [Organize by }

[

Organize by }

by Task /Data\ Data Flow
Linear] [Recursive Linear [Recursive Regular Irregular
Task Divide and Geometric Recursive Pieline Event Driven
Parallelism Conquer Decomposition Data P

This chart is like a guide for organizing a parallel programming problem.

Imagine you’re trying to solve a big problem by breaking it into smaller

pieces. There are three main ways to do this:

By Task: You divide the problem into different actions or tasks. For
example, if you have a list of things to do, you can either work on them in
order (linear) or break the tasks into smaller ones and solve those
(recursive) .

By Data: Instead of tasks, you split the problem based on the data itself.
For instance, if you have a big spreadsheet, you might cut it into rows or
sections (linear) or divide it into parts that depend on each other
(recursive) .

By Data Flow: This is about how the information moves between the parts.
Sometimes, the flow is predictable like an assembly line (regular). Other

times, it’s chaotic and depends on random events (irregular).

Example: reduction

A reduction is a very common pattern in parallel computing:

Large input data structure distributed across many PU

Every PU independently processes and computes results for the portion of the
data assigned to it (tally).

These tally values are combined to produce the final result

Examples:

The sum of the elements of an array
The maximum/minimum element of an array

Find the first occurrence of x in an array

Not parallelizeable algorithm: accumulate

Count number of 5s

CS-M4-5

44

Those are 2 different ways to count numbers

array[N] numberOf5 = 0
numberOf5 = 0 nWorkers = 4
for i in [O,N[: count5 (array, workerId):
if arrayl[i] == 5: beg = workerId*N/nWorkers
++number0Of5 end = beg + N/nWorkers

for i in [beg,end][:
if arrayl[i] == 5:

++numberO0f5

This is pseudo code, in C++ you have to use Threads.

Threads

A thread is an execution context, a set of register values.
» It defines the instructions to be executed and their order

A CPU core fetches this execution context and starts running the instructions:

the thread is running

When the CPU needs to execute another thread, it switches the context , i.e. it

saves the previous context and loads the new one

» Context switching is expensive

» Especially if threads jump from a CPU core to another

Concurrency does not imply parallelism

« If your program contains independent parts, they are the perfect candidates

for running concurrently

Restaurant for dinner: - cooking food and preparing the tables are independent

tasks and they can be performed by different workers to gain a speed-up
A and B are concurrent but not parallel wrt to each

¢ Considered all together, they are parallel

@

®
© | WORK |
@ [WORK =1
@ | WORK i & WORK]
@ | WORK | | WORK |

time

std: :threads - Hello World

CS-M4-5

#include <thread>
int main() {

auto f = [1(int 1) {
std::cout << "hello world from thread " << i << '\n';

i
std::thread to(f,0);

std::thread t1(f,1);
std::thread t2(f,2);

t0.join();

tl.join();
t2.j0in();

Fork-join

* The construction of a thread is asynchronous, fork
» Threads execute independently

* A join is the synchronization point with the main thread

Measuring time

#include <chrono>

auto start = std::chrono::steady_clock::now();
f(i);
auto stop = std::chrono::steady_clock::now();

std::chrono::duration dur = stop - start;

std::cout << dur.count() << " seconds\n";

f() is the function that you want to measure.

Be careful, asynchronous functions return immediately: remember to synchronize

before stopping the timer.
Exercise 1
You want to sum the elements of a vector in parallel using 4 threads.

o Accumulate the sum in the variable sum

#include <iostream>
#include <vector>
#include <thread>

void partialSum(const std::vector<int>& vec, int start, int end, int& result) {

CS-M4-5

result = 0;
for (int i = start; i < end; ++i) {
result += vecl[il];

int main() {
// Create a vector with 100 elements, all set to 1
std::vector<int> vec(100, 1);

int numThreads = 4;
int chunkSize = vec.size() / numThreads;

int partialResults[4] = {0};
std::thread threads[4];

// Start threads
for (int i = @; i < numThreads; ++i) {
int start = i * chunkSize;
int end = start + chunkSize;
if (i == numThreads - 1) {
end = vec.size();

}

threads[i] = std::thread(partialSum, std::ref(vec), start, end,
std::ref(partialResults[i]));
¥

// Wait for threads to finish
for (int 1 = @; i < numThreads; ++i) {
threads[i]l.join();

// Combine results

int sum = 0;

for (int i = @; i < numThreads; ++i) {
sum += partialResults[i];

std::cout << "Sum of vector elements: << sum << std::endl;

return 0;

Data Race

* A race condition occurs when multiple tasks read from and write to the same
memory without proper synchronization.
¢ The “race” may finish correctly sometimes and therefore complete without

errors, and at other times it may finish incorrectly.

If a data race occurs, the behavior of the program is undefined.

CS-M4-5 47

A std::mutex (short for "mutual exclusion") is a synchronization primitive used
to protect shared data from being accessed by multiple threads simultaneously.

It helps to avoid race conditions.
Scoped Lock with std::lock_guard

o A std::lock_guard is a RAII (Resource Acquisition Is Initialization) wrapper
around a mutex. It locks the mutex when the std::lock_guard is created and
automatically unlocks it when the std::lock _guard goes out of scope.

¢ This ensures that the mutex is properly unlocked, even if an exception is

thrown, making the code safer.

#include<mutex>
std: :mutex myMutex;

std::lock_guard myLock(myMutex);
//critical section begins here
std::cout << "Only one thread at a time" << std::endl;

} // ends at the end of the scope of mylLock

_ Effective parallel programming
---- requires that we have a sense of

the importance of locality.

For optimal CPU cache utilization,
the thread a should process
ement/and i+1

CPU Thread 2 CPU Thread 3

CPU Thread 0 CPU Thread 1

It's a performance issue in multithreading where threads inadvertently share
the same cache line but access different memory locations. Here's a breakdown

of the explanation:
Cache Line Basics:

* A cache line is a fixed-sized block of memory used as the smallest unit of

information exchange between processor caches.

¢ Common cache line size is 64 bytes.

CS-M4-5 48

False sharing occurs when two threads access different memory locations that

reside on the same cache line.

Even though threads are working on different memory, modifications by one

thread force the cache line to be reloaded in the other thread’s processor.

Performance Impact:

- Cache lines have to be moved between processor caches, which may take

hundreds of clock cycles.

- Leads to cache invalidation and frequent reloading of the same cache line.

Example Scenario:

Two threads (x and y) run on two cores sharing the same cache.
Assume:

A[500] and BI[500] are arrays.

The end of A and the start of B occupy the same cache line.
Thread x modifies A[499] and loads the cache line into its core.

Thread y modifies BI[0] .

This causes the cache line to be flushed and reloaded in both cores.

Result: Performance degradation due to unnecessary cache line contention.

Core 0 Core 1
‘ Thread ’ < Thread |)
|
(ache Cache
same
Cache Line m

/a

/

A

Memory

Solution:

Avoid false sharing by aligning data structures to cache line boundaries:

#include <new>

struct alignas(std::hardware_destructive_interference_size) alignedInt {
int x;

IE

alignas(std::hardware_destructive_interference_size) ensures that each variable

is aligned to a cache-line size, avoiding conflicts.

Atomic types:

CS-M4-5

encapsulate a value whose access i1s guaranteed to not cause data races

other threads will see the state of the system before the operation started

or after it finished, but cannot see any intermediate state

can be used to synchronize memory accesses among different threads

49

#include
std::atomic<int> x = 0;
int a = x.fetch_add(42);

* reads from a shared variable, adds 42 to it, and writes the result back: all

in one indivisible step

A type is trivially copyable if:

e It can be copied by bit-wise memory copying (e.g., using memcpy to copy its
bytes directly).
« It does not need any special logic to copy its wvalues, like constructors,

destructors, or virtual functions.
Characteristics:

¢ Continuous memory: The object is stored in a single, uninterrupted block of
memory, making it efficient to copy.

¢ Copying = bit-by-bit clone: When copied, all its bits are duplicated
exactly, without calling any functions or involving the object's internal
logic.

* No complex features: The type can't have virtual functions (like those in

polymorphic objects), and its constructor must not throw exceptions.
Example:

o Types like int, double, or structs made up of these basic types are

trivially copyable:

std::atomic<int> i; // OK: int is trivially copyable
std::atomic<double> x; // OK: double is trivially copyable
struct S { long x; long y; }; // A struct with basic types
std::atomic<S> s; // OK: Struct S is trivially copyable

* Why does this matter for std::atomic? Atomic operations often rely on low-
level memory operations like bit-level copying or exchanging, so they

require the type to be simple.

Without atomicity, two threads might read the same value simultaneously,
leading to incorrect results. With std::atomic, these operations are handled

safely.

Key Features:

1. Atomicity for Safety:
* Operations like ++X (increment) or X =Yy (assignment) happen as a
single step. This guarantees that no other thread can interrupt or

access the variable during the operation.

CS-M4-5 50

2. Operator Overloads:
o std::atomic provides operator overloads for common actions (like += or

|=), but only when these operations can be safely performed atomically.

Examples:

1. Atomic Initialization:

std::atomic<int> x{0}; // Initialize an atomic integer to 0

Here, x 1is now thread-safe for operations like incrementing or assigning.

2. Atomic Increment and Decrement:
e ++x and x++ are atomic because std::atomic ensures that only one thread
can access and modify the value at a time.
Non-atomic Operations:
° Operations that involve multiple steps, like X *= 2, are not atomic and

will not compile because they cannot guarantee thread safety.

4. Atomic Read/Write:

int y = x x 2; // Atomic read of X
X =y + 1; // Atomic write to x

When reading or writing to X, it is guaranteed that no other thread is
modifying it at the same time.

Atomic Exchange:

ul

e std::atomic provides the exchange() method to safely swap values:
cpp int z = x.exchange(y); // Atomically: z = x; X = y;
This ensures that the swap operation is done in one step, with no

interruptions.

Why is this useful?

In multithreaded environments, shared variables are often accessed by multiple
threads. Without atomicity, race conditions can occur, leading to unpredictable

bugs. std::atomic solves this by making these operations thread-safe.

Here’s an explanation of the topics in the image, enhanced with details and

practical insights:

CAS is a low-level atomic operation that is commonly used to implement lock-
free data structures. It works by comparing the current value of a variable
with an expected value and, if they match, updating the variable to a new

value.

bool success = x.compare_exchange_weak(y, z);

e X: The atomic variable.

° y: The expected value.

CS-M4-5

51

z: The new value.
If the current value of x matches y:

The value is updated to z, and success is set to true. Otherwise:

The operation fails, Yy is updated with the current value of x, and success
is set to false.

Thread 0 Thread 1
5 5

B
—
Destination C°L'Z:'e'ed
cas(5,7)
T .

cas(5,1)
-

7 7

R —

Destination =
compared
value 2

cas(7,1)

Set destination to
new value

Destination is
unchanged

Return true Return false

Two threads (Thread 0 and Thread 1) attempt to update the value of a
variable using CAS.

Example:
Initial value: 5
Thread 0: Executes cas(5,7) (compare 5; if 5, replace with 7) - Success,
value becomes 7.

Thread 1: Executes cas(5,1) - Fails because the value is now 7.
Key Advantages:

Lock-Free: CAS allows for safe concurrent modifications without the need for

traditional locks (like mutex), reducing contention.

Performance: Useful in performance-critical systems where locking mechanisms

can introduce latency.

What are Data Hazards?

Data hazards occur when multiple threads access shared memory without proper
synchronization, leading to unpredictable behavior.
Pro: Threads can communicate using shared memory.

Con: Without synchronization, this communication can lead to errors or race

conditions.
Types of Data Hazards:

Read-After-Write (RAW) :
Thread reads a value before another thread finishes writing to it.

Example: A thread reads a variable X as 5 while another thread is

incrementing it to 6.
Write-After-Read (WAR):

A thread writes to a variable after another thread reads it, potentially

invalidating the read value.

CS-M4-5

52

» Example: A thread reads x as 5, then another thread immediately writes
10 to Xx.
3. Write-After-Write (WAW):
* Two threads write to the same variable at the same time, leading to loss
of one write.

o Example: Thread 1 writes 6 to x, but Thread 2 overwrites it with 7

simultaneously.

Implications:

» Race Conditions: Data hazards result in race conditions, where the final

value depends on the thread execution order, making it unpredictable and

hard to debug.

Avoiding Data Hazards
Solutions:

o Thread-Safe Code:
e A program is thread-safe when it avoids data hazards and ensures that

shared memory access is synchronized.
* Critical Sections:
¢ Use synchronization mechanisms like a mutex (mutual exclusion) to ensure

that only one thread can access a shared resource at a time.

Thread 0 |+1| |+1

Thread 1
Example (Using Mutex) :

lock();
shared_variable++;
unlock();

* The lock() ensures no other thread can modify shared variable while the

current thread is updating it.
Example: Counting the Number of 5s in an Array
Problem:

e Given an array, count how many elements are equal to 5 using multiple

threads.

Approach:

» Divide the array into equal parts, with each thread responsible for a

portion.

CS-M4-5

53

Use a shared variable (number0f5) to count the 5s.

Synchronize access to numberOf5 using a lock to prevent race conditions.

Pseudocode:

int arrayI[N];
int numberOf5 = 0;
int nWorkers = 4;

void count5(int workerId) {

int beg = workerId * N / nWorkers;
int end = beg + N / nWorkers;
for (int i = beg; i < end; i++) {

if (array[i]l == 5) {
lock();
++number0f5;
unlock();

b

}
}
Explanation:

* The array is divided into 4 parts, and each thread processes its part
independently.

* Whenever a thread finds a 5, it locks access to the shared number0f5
variable, increments it, and unlocks.

* When multiple threads (or processing units) try to update the same data at
the same time, the system is forced to serialize those updates to avoid data
corruption.

¢ This can lead to a performance bottleneck.

Massively Parallel Execution Cannot Afford Serialization

e In parallel programming, you want to divide the work among many threads so
they can run simultaneously.

o If a critical piece of data must be updated often (e.g., a shared counter),
each update might be forced into a “one-at-a-time” mode—ruining the benefits
of parallelism.

The more threads that try to access or update a single shared resource, the

greater the contention—and thus the overhead.

Key takeaway: If every thread must frequently update the same variable (e.g.,

number0f5), these updates act as a choke point.

Mitigating Contention

1.

CS-M4-5

Privatization
» Give each thread or worker its own copy of the data to reduce contention

on a global structure.

54

Each thread works on its local/private version; updates to the global
data only happen once per thread or in bulk.

Transformation of the Access Pattern
Restructure how you access data so there are fewer shared accesses.

For instance, instead of each thread incrementing the same counter
repeatedly, each thread can accumulate a private total and then do a

single update to a global counter.

Avoid Frequent Transactions to/from Global Memory

Memory transactions (especially to global/main memory in a GPU or multi-

core system) are expensive.
Minimize how often you read/write to global data.

Use Registers and Shared Memory for Aggregating Partial Results

These faster memory tiers reduce overhead.

Summarizing partial results locally (e.g., in a register or thread-local

variable) is quicker than multiple global updates.

Requires Storage Resources to Keep Copies of Data

The downside of privatization is the extra memory cost (each thread has

its own copy) .

Example Code: Counting the Number of 5s

CS-M4-5

Serial version

array [N]
number0f5 = @
for i in [0, NI:
if arrayl[i] ==
number0f5++
return numberOf5

Simple loop, single thread.

Parallel version (with 4 workers)

number0f5 = 0
nWorkers = 4

count5(array, workerId):
privateResult = 0
beg = workerId x (N/nWorkers)
end beg + N/nWorkers

for i in [beg, end[:
if arrayl[i] ==

privateResult++
lock()
number0f5 += privateResult
unlock()

Each thread/worker gets a chunk of the array (determined by beg and
end) .

95

o)

2. A private counter (privateResult) is maintained per thread.

3. After counting within its chunk, each thread does a single update to the

shared number0Of5 (protected by lock/unlock).

Key takeaway: This approach greatly reduces contention compared to incrementing

a global counter for every single 5 found. Instead, each thread only updates

the global counter once.

“The T=8 version does not take half the time compared to T=4. Why not?”

Reasons for Non-Linear Speedup

Increasing the number of threads to 8 does not simply halve the time from 4

threads because real-world parallel programs face overheads from

synchronization, memory bottlenecks, non-ideal load balancing, and diminishing

returns as you keep adding threads.

Sometimes dividing the input data in 2 does not mean that the load has been

also divided.

» Example: total load 100. If 5 workers take 20 each we have a speedup of 5,

if 1 worker takes 50, we have speedup of 2.
¢ Non-uniform data distributions
e Highly concentrated spatial data areas

» Astronomy, medical imaging, computer vision, rendering

If each thread processes the input data of a given spatial volume unit, some

will do a lot more work than others.

Load Imbalance with Code Example

i_start = my_id *x (N / num_threads); // Start index for this thread
i_end = i_start + (N / num_threads); // End index for this thread
if (my_id == (num_threads - 1)) i_end = N; // Adjust for the last thread

for (int i = i_start; i < i_end; ++i) {

1. How Work is Divided:
¢ N/num_threadsN / num threads: Each thread gets an equal share of
iterations.
o 1 _start and i_end: Define the range for each thread based on its ID
(my_id) .

e The last thread (my_id == num_threads - 1) adjusts i_end to ensure all

remaining iterations are included.

CS-M4-5

56

With N = 1000 and num_threads=32 :
Each thread is assigned |N/num_threads| = 3literations.
The first 31 threads execute iterations: 0to30, 31to61,...,961 to 991
The last thread adjusts i_end to NN, handling the leftover: 992 to 999
Why Load Imbalance Occurs:
The last thread processes 3148 =39 iterations, while others only

process 31.

This happens because N is not perfectly divisible by num_threads

Parallel computing All exponential laws come to an end...
Parallel computing becomes useful when:

The solution to our problem takes too much time (but consider Amdahl's Law)
The size of our problem is big (Gustafson's Law)
The solution of our problems is poor, we would like to have a better one
Three steps to a better parallel software:

Restructure the mathematical formulation

Innovate at the algorithm and data structure level

Tune core software for the specific architecture

CS-M4-5

57

Threading Building Blocks

OneAPI Threading Building Blocks (TBB) is a library proposed by Intel which allows

to express parallelism on CPUs in a C++ program.

e Parallelizing for loops can be tedious with std::thread

e One wants to achieve scalable parallelism, easily
To use the TBB library, you specify tasks, not threads, and let the library

map tasks onto threads in an efficient manner

° We will see just the parallel_for construct
Why not threads directly?

Direct programming with threads forces you to do the work to efficiently map

(schedule) logical tasks onto threads

¢ The TBB runtime library maps tasks onto threads to maximize load balancing

and, hence, performance

Example:
for (int i = 0; i '= N; ++1i) {
++x[1];
}

oneapi::tbb::parallel_for(
oneapi::tbb::blocked_range<int>(@, N),
[&] (oneapi::tbb::blocked_range<int> range) {
for (int i = range.begin(); i !'= range.end(); ++i) {
++x[1];

A loop needs to last for at least 1M clock cycles for parallel for to become worth
it.

Usually, adding more cores than the limit does not only result

in performance improvements, but performance falls.
» Overhead in scheduling and synchronizing many small tasks starts dominating

TBB uses the concept of Grain Size to control the granularity of

tasks

CS-M4-6 58

CS-M4-6

The grain size affects how the scheduler can distribute tasks to the available
workers (threads)

If the grain size is 1000 and the loop iterates over 2000 elements,

the
scheduler can give the work at most to 2 threads

Note:

with a grain size of 1, most of the time may be spent in scheduling

with a grain size of N, the execution is in fact sequential

Automatic:

TBB provides a default set of heuristics to select a good-enough grain
size.

Simple: the simple partitioner allows to manually select the grain size,
passing it to the blocked range constructor

The default is 1, in units of loop iterations per chunk

Rule of thumb: G iterations should take at least 100k clock cycles
Affinity: the affinity partitioner can help when:

data in a loop fits in cache

the ratio between computations and memory accesses is low

59

