
Computer Science for HEP
Module 4

Fabio Cufino IMAPP

C++ stuff that I should already know

Now I'll start a little recap of the thing that I would like not to forget.

Objects

The constructs in a C++ program create, destroy, refer to, access, and manipulate

objects

• An object is a region of storage (i.e. memory)

◦ it has a type

◦ it has a lifetime

◦ it can have a name

A type identifies a set of values and the operations that can be applied to those

values

◦ C++ is a strongly typed language (mostly)

int

Arithmetic types

◦ integral types

− signed integer types: short int, int, long int, long long int

− unsigned integer types: unsigned short int, unsigned int, unsigned long int,

unsigned long long int

− character types: char, signed char, unsigned char, . . .

− boolean types: bool

◦ floating-point types: float, double, long double

std::nullptr_t

type of the null pointer nullptr

void

denotes absence of type information

With N bits, values are in the range (−2N−1, 2N−1 − 1)

Pay attention to the negative numbers rapresentation

CS-M4-1 2

Identifiers

Variables

Literals

A literal is a constant value of a certain type included in the source code:

• integer • floating point • character • string • boolean • null pointer • user-

defined

std::string

Typical size is 32 bits (4 bytes)

An identifier is a sequence of letters (including _) and digits, starting
with a letter

Identifiers are used to name entities in a program

A variable is an identifier that gives a name to an object

int i; // declaration; the value is undefined
i = 4321; // assignment of a constant
int j{1234}; // declaration and initialization in one step
i = j; // assignment of j's value to i

CS-M4-1 3

Flow Control

Algorithms

A finite sequence of precisely defined steps to solve a problem

Statements

Statements are units of code that are executed in sequence:

• expression statement • compound statement or block • declaration statement •

selection statement • iteration statement • jump statement

Expression statement

Block

A sequence of zero or more statements enclosed between braces ({})

Declaration statement

Provided by the C++ Standard Library

A compound (user-defined) type to represent a string of characters

An std::string can be initialized with a string literal, a sequence of escaped
or non-escaped characters between double quotes

"hello" "hello'\n'world" "hello "world""

\n means “newline”

The type of a string literal is not std::string

std::string corso{"Programmazione per la Fisica"};
corso = corso + "\nAnno Accademico 2023/2024"; \\WRONG

An expression followed by a semicolon (;)

An expression is a sequence of operators and their operands that specifies a

computation

The evaluation of an expression typically produces a result

A declaration statement introduces one or more new identifiers into a C++

program, possibly initializing them

◦ typically variables, but not only

CS-M4-1 4

Scope

The scope of a name appearing in a program is the, possibly discontiguous, portion

of source code where that name is valid

Logical operations

A declaration of a variable in a block makes the variable of automatic storage

duration, unless otherwise specified

the corresponding object is automatically created each time the

declaration is executed

the corresponding object is automatically destroyed each time the

execution reaches the end of the block

A declaration should introduce only one identifier

A variable should be declared only in the moment it’s actually needed

A variable should be initialized at the point of declaration

There are very few exceptions, if any, to this recommendation

CS-M4-1 5

Double

64 bits, smallest values ≈±10^{−308}, largest values ≈±10^{308}

Float

32 bits, smallest values ≈±10^{−38}, largest values ≈±10^{38}

Standard mathematical functions

cmath
The cmath header includes many ready-to-use mathematical

functions

• Exponential

• Power

• Trigonometric

• Interpolation

• Hyperbolic

• Floating-point manipulation, classification and comparison

Type conversions

A value of type T1 may be converted implicitly to a value of type

T2 in order to match the expected type in a certain situation

Mechanism exist to define implicit and explicit conversions involving user-defined

types

const-safety

Precision is about 16 decimal digits

Precision is about 7 decimal digits

#include <cmath>

double x{···};
std::sqrt(x);
std::pow(x, .5);
std::sin(x);
std::log(x);
std::abs(x);

Conversions can be explicit using static_cast

1 + static_cast<int>(2.3)

CS-M4-2 6

Data qualified as const is logically immutable. Data that is meant to be immutable

should be const.

Functions

A function needs to be declared/defined before it’s used

Recursive functions

A function can call itself, directly or indirectly

int const x{1'000'000'000}; // or const int
std::cout << x + 32; // ok, read-only
x += 32; // error, trying to modify
int const y; // error, not initialized and not modifiable later

std::string const message{"Hello"};
std::cout << message + " Francesco"; // ok, read-only
message += " Francesco"; // error, trying to modify
std::string const empty_message; // ok! empty string

A function declaration contains the essential information needed to invoke the

function `return-type function-name(parameter-list);

If the declaration is followed by the actual block of statements (the

implementation of the function), it is also a definition return-type function-

name (parameter-list) {···}

Note the block scope

Each parameter in the parameter list is of the form type name_opt

type is mandatory

name is optional

− in the declaration, but useful for documentation purposes

− in the definition if it’s not used

If the function returns nothing, the return type is void

int isqrt(int); // declaration
int count_words(std::string s) {··· } // definition
double pow(double base, double exp); // declaration
void print(std::string); // declaration
int generate_random_number() {··· } // definition

Within the function block, the return statement returns the result (and the

control) to the calling function

For a function returning a non-void type return expression ;

The result of expression must be convertible to the return type

For a function returning void

return;

At the end of the function, return; is optional.

CS-M4-2 7

Function overloading

Multiple functions can share the same name but must have different parameter lists

(number and/or types).

Memory layout of a process

called recursion

Often an elegant alternative to a loop

int sum_n(int n)
{

// assume n >= 0
if (n == 0) { // base case
return 0;
} else { // recursive case
 return n + sum_n(n - 1);
}

}

Compiler Behavior:

The compiler selects the function that best matches the call, applying

implicit conversions when appropriate.

Errors occur if no match or multiple equally valid matches exist.

Return Type:

The return type is irrelevant for function overloading.

void foo(int);
int foo(int, char);
bool foo(double);
int foo(std::string s);

foo(0); → Calls foo(int)

foo(0, '0'); → Calls foo(int, char)

foo(0.); → Calls foo(double)

foo(std::string{}); → Calls foo(std::string)

foo(0L); → Ambiguous, error

foo('a'); → Calls foo(int)

foo("a"); → Calls foo(std::string)

A process is a running program

When a program is started the operating system brings the contents of the

corresponding file into memory according to well-defined conventions

CS-M4-2 8

Functions and the stack

Pass by Value, Return by Value

Example:

int add(int a, int b) {
 return a + b; // `a` and `b` are copies of the arguments passed
}

int main() {
 int x = 5, y = 10;
 int sum = add(x, y); // `x` and `y` are passed by value
 // Modifying `a` or `b` in `add` has no effect on `x` or `y`
 return 0;
}

CS-M4-2 9

Hene:

Pass-by-value: Arguments are copied into function parameters.

Return-by-value: The return expression is copied to the caller’s variable.

Changes inside the function do not affect the original variables. This

provides isolation and ensures the integrity of the original arguments.

CS-M4-2 10

Passing by value may be inconvenient

Consider a function that increments an int object

Where in memory does a given object reside?

Pointers and References in C++

1. Introduction to Pointers

Pointers are variables that store the memory address of another variable.

Declaring a Pointer

To declare a pointer, use the * symbol:

Accessing the Value via Pointer

To access the value at the address a pointer holds, use the dereference operator

* :

NB The function does not return the new value; it modifies the passed object

in place

We cannot write void increment(int n), because the function would modify a

copy of the original object

int i{4321};
int j{1234};
std::cout << &i; // 0xab00, address-of operator
std::cout << &j; // 0xcd00
int* p{&i}; // pointer declarator
std::cout << &p; // 0xbad0
int** pp{&p}; // &p is of type int**
p = &j;
int* q{p}; // p and q point to the same object

int num = 10;
int *ptr = # // 'ptr' now holds the address of 'num'

CS-M4-3 11

Changing Value through a Pointer

You can modify the variable's value by dereferencing the pointer:

Passing a pointer

Const and pointers

2. Introduction to References

References are another name for an existing variable. They cannot be null or

reassigned after initialization.

Declaring a Reference

Use the & symbol to declare a reference:

Accessing and Modifying Values

Accessing or modifying the reference affects the original variable:

std::cout << *ptr; // Output: 10

*ptr = 20;
std::cout << num; // Output: 20

The caller takes the address of the object and passes it to the function

The function dereferences the pointer to get access to the object

Be careful not to dereference a null pointer

int num = 10;
int &ref = num; // 'ref' is a reference to 'num'

CS-M4-3 12

Passing bt reference

Const and reference

3. Key Differences Between Pointers and References

Aspect Pointer Reference

Nullability Can be null Cannot be null

Reassignment Can point to different
variables

Must be initialized and cannot be
reassigned

Syntax * for dereferencing Access like a regular variable

4. Example of Using Both in a Function

In this example, we'll use pointers and references to modify values inside a

function.

std::cout << ref; // Output: 10
ref = 20;
std::cout << num; // Output: 20

There is no difference in the caller compared to pass-by-value

There is no difference in the body of the function compared to pass-by-value

The only visual clue is in the parameter declaration

#include <iostream>

void updateWithPointer(int *ptr) {
 *ptr += 5; // Modifies the value at the memory address
}

void updateWithReference(int &ref) {

CS-M4-3 13

Mobile User

In this example:

How to pass arguments to functions

• For input parameters

◦ If the type is primitive, pass by value

Returning a reference

A function can return a reference only if the referenced object survives the end

of the function

◦ Otherwise, in the caller, the reference would refer to an object that doesn’t

exist anymore

In particular do not return a reference to a function local variable

Useful to chain multiple function calls on the same object

 ref += 5; // Directly modifies the value of the referenced variable
}

int main() {
 int num1 = 10, num2 = 10;

 updateWithPointer(&num1); // Passing by pointer
 updateWithReference(num2); // Passing by reference

 std::cout << "After updateWithPointer: " << num1 << std::endl; // Output: 15
 std::cout << "After updateWithReference: " << num2 << std::endl; // Output: 15

 return 0;
}

updateWithPointer takes a pointer, *ptr , to modify num1 .

updateWithReference takes a reference, ref , to modify num2 .

Otherwise pass by const reference

For output parameters, prefer to return a value or pass by non-const reference

For input-output parameters, pass by non-const reference

CS-M4-3 14

range-for loop

Auto

Let the compiler deduce the type of a variable from the initializer, i.e. from the

expression used to initialize the object

Enumerations

An enumeration is a distinct type with named constants called enumerators.
2. Scoped Enumerations (enum class):
- Enumerators are specified with the name of the enumeration and the scope-

resolution operator (::), e.g., Operator::Plus .
- Default values:

- The first enumerator has the value 0 by default.
- Subsequent enumerators increment by 1 unless explicitly set.

- Explicit values can be assigned, e.g., Plus = -2 .
3. Underlying Type:

std::string& to_lower(std::string& s) { · · · ; return s; }
std::string& trim_right(std::string& s) { · · · ; return s; }
std::string& trim_left(std::string& s) { · · · ; return s; }

std::string s{· · ·};
trim_left(trim_right(tolower(s)));

Simplified form of a for loop, to iterate on all the elements of a range

(sequence), such as a string of characters

Execute repeatedly statement for all the elements of the range

range-declaration declares a variable of the same type of an element of the

range

Can (and should) be a (const) reference

range-expression represents the range to iterate over

std::string s{"Hello!"};
for (char& c : s) {
 c = std::toupper(c);
}

for (int i : {1, 2, 3, 4, 5}) {
 std::cout << i << ' ';
}

auto never deduces a reference

auto preserves constness of references

CS-M4-3 15

- By default, the underlying type is int .
- It can be changed, e.g., enum class byte : unsigned char { }; .
- Values of the underlying type are valid enumeration values.

4. Type Conversion:
- Conversion to the underlying type requires explicit casting, e.g., int i =
static_cast<int>(Operator::Plus); .
5. Unscoped Enumerations:

- No class keyword, e.g., enum Operator { Plus, Minus }; .
- Enumerator symbols are visible in the enclosing scope (no need for ::).
- Implicit conversion to the underlying type is allowed.

- Use scoped enumerations for better type safety and clarity.

The switch statement

The switch statement transfers control to one of multiple statements, depending on

the value of a condition

The condition is an expression whose evaluation gives an integral or enumeration

value

Data abstraction

The C++ language has a strong focus on building lightweight data abstractions

double compute(char op, double left, double right) {
double result;

switch (op) {

case '+': result = left + right;
break;

· · ·

case '/': result = (right != 0.) ? left / right : 0.;
break;

 default: result = 0.;
 }

return result;
}

Cannot switch on strings, for example

Typically each statement is followed by a break statement, to jump after the

switch, otherwise control falls through the next instruction, even if this is

part of a statement introduced by another labe

CS-M4-3 16

Let’s introduce a type to represent complex numbers

Private and public

Imagine to change the Complex type to use the polar form

As a consequence, all client code has to change

The source code can use terminology and notation close to the problem domain,

making it more expressive

There is little (if any) overhead in terms of space or time during execution

Class and struct are the primary mechanism to define new compound types on top

of fundamental types.

We can pass/return Complex objects to/from functions, take pointers and

references, . . .

It’s possible to define operations on user-defined types

struct Complex { double rho; double theta; };

double norm2(Complex const& c) { return c.rho * c.rho; }

CS-M4-3 17

Changing the internal representation (e.g., from Cartesian to polar coordinates in

struct Complex) requires modifying all client code.
- Some combinations of data (e.g., (ρ,θ) with invalid ρ<0 θ not in (0,2π) might

not be valid.

Desired Solution:

- Increase isolation between client code and internal representation.

- Enforce internal relationships (class invariants) between data members.

Encapsulation

The internal representation of data should be considered an implementation detail

and hidden from clients.

Manipulation of objects should be done via a well-defined function-based
interface.

2. Implementation:
- Declare data members (x , i) as private.
- Provide public member functions (methods) for interaction.
3. Naming Convention:

- Use special naming conventions for data members (e.g., _suffix or m_prefix).

Example:

Construction

A class can have a special function, called constructor, which is called to
initialize the storage of an object when it is created.

#include <stdexcept> // For exceptions

class Complex {
private:
 double r_;
 double i_;

public:
...constructor...

 void setReal(double real) {
 if (real < 0) {
 throw std::invalid_argument("Real part cannot be negative");
 }
 r_ = r;

}
};

CS-M4-3 18

Best Practices:
- Use the member initialization list to initialize data members in the order they

are declared.

Example:

It should initialize all data members, in order to establish the class

invariant

Complex(double x, double y) : x{x}, i{y} { }

Avoid performing additional logic in the constructor body if it can be done in

the initialization list.

Data members are initialized in the order of declaration and should preferably

be initialized in the member initialization list

The constructor’s name is the same as the class name

class Complex {
private:
 double r_;
 double i_;
public:
 Complex(double x, double y) // no return type
 : r_{x}, i_{y} // member initialization list
 { /* nothing else to do */ }

...
};

Complex c{1., 2.}; // or (1., 2.)

For a class, private is the default and can be omitted

Member functions that don’t modify the object should be declared const

A class can have multiple constructors

A data member can be given a default initializer, which is used if the member

is not explicitly initialized in the called constructor

class Complex {
double r_{0.};
double i_{0.};

public:
Complex(double x, double y) : r_{x}, i_{y} {}
Complex(double x) : r_{x} {} // i_ initialized with 0
Complex() = default; // r_ and i_ initialized with 0

···
};

Complex c1{1., 2.};

CS-M4-3 19

Pointers and data structures

• address-of operator: &
◦ Given an object it returns its address in memory

• dereference operator: *
◦ Given a pointer to an object it returns a reference to that object

• structure dereference operator: ->
◦ Given a pointer to an object of class/struct type, it returns a reference to a

member of that object

Exceptions

Exceptions provide a general mechanism to:

typically when a function is not able to accomplish its task, i.e. to satisfy its

post-condition

Complex c2{1.}; // meaning {1., 0.}
Complex c3; // meaning {0., 0.}

struct S {
int n;
void f();

};

S q{···};
S* p = &q;

p->n; // equivalent to (*p).n
p->f(); // equivalent to (*p).f()

notify the occurrence of an error in the program execution,

using a throw expression

class Rational
{
private:

int n_;
int d_;

public:
Rational(int num = 0, int den = 1) : n_{num}, d_{den}

{

if (d_ == 0) {
CS-M4-3 20

An exception is an object

Templates

Let’s consider again the Complex class

What if we want float members?

throw std::invalid_argument("Denominator cannot be zero");
}

After being raised (thrown), an exception is propagated up the stack of

function calls until a suitable catch clause (handler) is found

If no suitable handler (i.e. one compatible with the type of the exception) is

found, the program is terminated

auto function1() {

try {
··· // this part is executed
throw E{};
··· // this part is not executed

} catch (E const& e) {
··· // use e -> // manage the error, e.g. log a message on stdandard error

}

}

An exception is typically raised by a constructor to inform that it is not

able to properly initialize the object

class Complex {
double r;
double i;

public:
Complex(double x = double{}, double y = double{}) : r{x}, i{y} {}

double real() const { return r; }
double imag() const { return i; }

};

CS-M4-3 21

We can transform Complex into a template, with the floating-point type a parameter

of that template

Now we also have to specify the FP

The C++ Standard Library

How can we guarantee that in a program composed of thousands of files, written by

thousands of people, using third-party libraries, there are no conflicts between

identifiers?

template<typename FP> // or, template<class FP>

class Complex {

private:
FP r;
FP i;

public:
Complex(FP x = FP{}, FP y = FP{}) : r{x}, i{y} {}
FP real() const { return r; }
FP imag() const { return i; }

};

Complex c; // error
Complex<double> d; // instantiation of a Complex<double> type
Complex e{1.,1.}; // Complex<double> deduced

Namespaces are a mechanism to partition the space of names in a program to

prevent such conflicts

// in <vector>

namespace std {
template<class T> vector {··· };

}

CS-M4-3 22

The standard library contains components of general use

◦ containers (data structures)

◦ algorithms

◦ strings

◦ input/output

◦ mathematical functions

◦ random numbers

◦ regular expressions

◦ concurrency and parallelism

◦ filesystem

Containers of objects

A program often needs to manage collections of objects

◦ e.g. a string of characters, a dictionary of words, a list of particles, a

matrix, ...

std::vectorT

Iterators and ranges

An iterator is an object that indicates a position within a range

A container is an object that contains other objects

Dynamic container of elements of type T

its size can vary at runtime

layout is contiguous in memory

The size method gives the number of elements in the vector

The empty method tells if the vector is empty

operator[] gives access to the ith element

The push_back method adds an element at the end of the vector

vec.push_back(-2); // vec is now {4,5,7,-2}
vec.push_back(0); // vec is now {4,5,7,-2,0}

A container, such as a vector, is a range

Ranges are typically obtained from containers calling methods begin and end

CS-M4-3 23

Erese

In general, iterators pointing to erased elements are not valid anymore

◦ For a vector, iterators pointing to elements following the erased one are also

invalidated, including the end iterator

Insert

The insert method inserts an element before the position indicated by an iterator

Array(N,T)

std::array<T, N>

std::vector<int> v {···};
auto first = v.begin(); // std::vector<int>::iterator
auto last = v.end(); // std::vector<int>::iterator

Syntactically, operations on iterators are inspired by pointers

The erase method removes the element pointed to by the iterator passed as

argument (must not be end())

// remove the central element
auto it = v.begin() + v.size() / 2; // iterator to the middle element
v.erase(it);

The erase method can remove a range, passing two iterators

// erase the 2nd half of the vector
auto it = v.begin() + v.size() / 2; // iterator to the middle element
v.erase(it, v.end()); // size ~halved here

v.erase(it);
*it; // undefined behaviour (UB)
++it; // UB, be careful in loops
it =···; // ok

// insert the value 42 in the middle of the vector
auto it = v.begin() + v.size() / 2;
v.insert(it, 42); // size increased by 1

#include <array>

// 2 ints, uninitialized

CS-M4-3 24

Algorithms

• Generic functions that operate on ranges of objects

• Implemented as function templates

Example:

This is better:

Find an element equal to val in a container cont

std::array<int,2> a;

// 2 ints, initialized to 1 and 2
std::array<int,2> b{1,2};

// 2 ints, value-initialized (0 for int)
std::array<int,2> c{};

// 2 ints, initialized to 1 and 0
std::array<int,2> d{1};

// make a copy
auto e = b;
assert(e == b);

he size method gives the number of elements in the array (which corresponds to

N)

operator[] gives access to the ith element

begin, end, empty, front, back methods

No push_back or insert, the size is fixed.

Sum all the elements of a container cont of ints

int sum {0};

for (auto it = cont.begin(), last = cont.end(); it != last; ++it) {
sum += *it;

}

auto sum = std::accumulate(cont.begin(), cont.end(), 0); // better

auto it = cont.begin();
auto const last = cont.end();

for (; it != last; ++it) {
if (*it == val) {

CS-M4-3 25

This is better:

Hierarchy of iterators

Examples of algorithms

Algorithms in action:

break;
}

}

auto it = std::find(cont.begin(), cont.end(), val); // better

std::array a {23, 54, 41, 0, 18};

// sort the array in ascending order
CS-M4-3 26

Why using standard algorithms

•They are correct

•They express intent more clearly than a raw for/while loop

•They are efficient

◦ They give computational complexity guarantees

◦ How fast do they run? how much additional memory do they need?

•They enable easy access to parallelism

Algorithms and functions

Notes with Code Snippets

• find Algorithm:

find_if Algorithm:

std::sort(std::begin(a), std::end(a));

// sum up the array elements, initializing the sum to 0
auto s = std::accumulate(std::begin(a), std::end(a), 0);

// append the partial sums of the array elements into a vector
std::vector<int> v;
std::partial_sum(std::begin(a), std::end(a), std::back_inserter(v));

auto p = std::inner_product(std::begin(a), std::end(a), std::begin(v), 0);

// find the first element with value 42, if existing
auto it = std::find(std::begin(v), std::end(v), 42);

template <class Iterator, class T>

Iterator find(Iterator first, Iterator last, const T& value) {
 for (; first != last; ++first)
 if (*first == value)
 break;
 return first;
}

auto it = find(v.begin(), v.end(), 42);

Searches for 42 in the range [v.begin(), v.end()).

Returns an iterator to the found element or v.end() if not found.

template <class Iterator, class Predicate>

Iterator find_if(Iterator first, Iterator last, Predicate pred) {
 for (; first != last; ++first)
 if (pred(*first)) // unary predicate
 break;

CS-M4-3 27

Algorithms like find and find_if are versatile for searches in ranges. Functions

or lambdas enable custom logic within algorithms for flexibility.

Function objects

A function object, being an instance of a class, can have state. This allows you
to encapsulate additional data (state) within the function object and use it in

the callable operator().

Example Breakdown:

1. Class Definition:

 return first;
}

bool lt42(int n) { return n < 42; }
auto it = find_if(v.begin(), v.end(), lt42);

Uses a predicate lt42 to search for the first value less than 42.

A function like lt42 is straightforward but less flexible.

A function object (LessThan42) allows additional customization, such as

maintaining state or using templates for more complex conditions.

class LessThan {
 int m_; // The state (threshold value for comparison)
public:
 explicit LessThan(int m) : m_{m} {} // Constructor to initialize the state
 auto operator()(int n) const {
 return n < m_; // Callable function using the stored state

CS-M4-3 28

• m: This is a member variable that stores the threshold value.
• Constructor: Accepts an integer m to initialize the state.

• operator(): Takes an integer n as input and compares it with the stored
threshold m.

2. Example Usage:

a. Creating Stateful Instances:

• Here, lt42 and lt24 are separate objects with different states (m = 42 and m =

24 respectively).

• They behave differently depending on their state when called with the same input

(32).

b. Using in Algorithms:

• lt42: The first element satisfying n < 42 is 32, so *i1 == 32.

• lt24: No element satisfies n < 24, so the iterator i2 equals v.end().

Key Takeaways:

 }
};

LessThan lt42{42}; // State: m_ = 42
auto b1 = lt42(32); // true, because 32 < 42
// Alternative syntax: auto b1 = LessThan{42}(32);

LessThan lt24{24}; // State: m_ = 24
auto b2 = lt24(32); // false, because 32 >= 24
// Alternative syntax: auto b2 = LessThan{24}(32);

std::vector v {61, 32, 51};

// Search using lt42 (threshold 42)
auto i1 = std::find_if(v.begin(), v.end(), lt42);
// *i1 == 32, because 32 is the first element < 42

// Search using lt24 (threshold 24)
auto i2 = std::find_if(v.begin(), v.end(), lt24);
// i2 == v.end(), because no element is < 24

The LessThan class is stateful because each instance stores a threshold value

(m_).

Different instances (lt42, lt24) can have different behaviors based on their

states.

Function objects like LessThan can be directly passed to STL algorithms (e.g.,

std::find_if), allowing for concise and expressive code.

CS-M4-3 29

Here an example form the standard library

Lambda functions

C++ Lambda expression allows us to define anonymous function objects which can

either be used inline or passed as an argument.

Example:

Lambda Function as Argument in STL Algorithm

A concise way to create an unnamed function object.

Example:

They are more convenient because we don't need to overload the () operator in
a separate class or struct.

#include <iostream>
using namespace std;

int main() {
 // create a lambda function that prints "Hello World!"
 auto greet = []() {
 cout << "Hello World!";
 };

 // call lambda function
 greet();

 return 0;
}

Use Cases: Ideal for actions/callbacks in algorithms, threads, or frameworks.

CS-M4-3 30

Here you understand why they are so important

really easy to write. Here instead the equivalent without the lambda function:

Lambda Closure

• Definition: A lambda expression produces an unnamed function object, also called

a closure.

Components:

Example:

Equivalent Functor Implementation:

std::find_if(container.begin(), container.end(), [](int n) {
 return n < 42;
});

struct LessThan42 {
 auto operator()(int n) const {
 return n < 42;
 }
};

std::find_if(container.begin(), container.end(), LessThan42{});

What is the LessThan42? Why not a simple function?

operator() defines the body of the lambda.

Captured local variables become data members of the closure.

auto v = 42;

auto lt = [v](int n) { return n < v; };

bool result = lt(5); // true

class SomeUniqueName {
 int v;

CS-M4-3 31

Lambda Capture

Definition: Capturing variables from the surrounding scope in a lambda.

Capture Options:
• []: Capture nothing.

• [=]: Capture all variables by value.

• [&]: Capture all variables by reference.

• [k]: Capture k by value.

• [&k]: Capture k by reference.

• [=, &k]: Capture all by value, except k by reference.

• [&, k]: Capture all by reference, except k by value.

Example:

Lambda: Const and Mutable

Mutable Lambdas: Declared with mutable to allow modification of captured

variables.

Compilation model

...

Stuff that I'm supposed to know

public:
 explicit SomeUniqueName(int v) : v(v) {}
 auto operator()(int n) const {
 return n < v;
 }
};

auto lt = SomeUniqueName{42};
bool result = lt(5); // true

int v = 3;
auto l = [&v]() { v = 5; }; // Captures v by reference
l();
std::cout << v; // Outputs: 5

Default Behavior: A lambda is const by default.

Variables captured by value are not modifiable.

The parameter list is mandatory.

Explicit return type (if present) comes after mutable.

CS-M4-3 32

...

Static Data and Functions

CMake is an open-source, cross-platform family of tools designed to build,

test and package software

Build targets, dependencies, options, ...are expressed declaratively in a file

called CMakeLists.txt

cmake_minimum_required(VERSION 3.16)
project(mandelbrot_sfml VERSION 0.1.0)
find_package(SFML 2.5 COMPONENTS graphics REQUIRED)
string(APPEND CMAKE_CXX_FLAGS " -Wall -Wextra")
add_executable(mandelbrot_sfml main.cpp)
target_link_libraries(mandelbrot_sfml PRIVATE sfml-graphics)

CS-M4-3 33

Explicit Memory Management

A process is a running program

When a program is started the operating system brings the contents of the

corresponding file into memory according to well-defined conventions

it’s not always possible or convenient to construct objects on the stack,

where they would be destroyed at the end of the function that created them

An object (array of objects) can be constructed on the free store (heap)

new expression (for an array: new [])

The lifetime of an object (array of objects) on the heap is explictly managed

by the developer

delete expression (for an array: delete [])

CS-M4-3 34

The main function

The main (special) function is the entry point of a program

It can have two forms

◦ int main() {···}

◦ int main(int argc, char* argv[]) {···}

If there is no return statement, an implicit return 0; is assumed

◦ 0 means success, different from 0 means failure

argc is the number of arguments on the command line, argv is an array of C-

strings representing the arguments

◦ argv[0] is (usually) the name of the program

◦ argv[argc] is nullptr

CS-M4-3 35

Dynamic polymorphism

CS-M4-3 36

Memory matters

Introduction

This is a typical simplified cpu and system layout

The ideal situation can be approximated with a hierarchy of different memory

types. This is a plot of the access time and the various levels

When a miss occurs, data is transferred from a lower level (e.g., main memory) to

a higher level in blocks called cache lines.

Locality Principle

GitHub: https://github.com/giacomini/cshep2024

Memory is organized in a hierarchy (e.g., CPU registers, cache levels, main

memory, secondary storage).

The highest level (like CPU cache) is the fastest and closest to the processor

but has less storage.

Hit: When data is found in the highest level of memory (e.g., cache). This is

fast, and the hit rate measures the fraction of accesses that are hits.

Miss: When data isn’t found in the highest level. The system fetches it from
lower levels, which takes longer (referred to as miss penalty).

1. Definition:

The principle states that programs tend to access memory locations in

CS-M4-4 37

https://github.com/giacomini/cshep2024

Locality principle

Temporal locality

Spatial locality

Cache effect

The efficiency of a program does not depend only on the computational complexity

of an algorithm...

Size of a type

Let's see how to help the program to have reasonable efficiency

How do you now the size in bite o the different types? sizeof

Layout of data structure

Definition: Alignment constraints mean that variables of a certain type must be

stored at memory addresses that are multiples of their size.

predictable patterns, which can be exploited to optimize memory hierarchy.

2. Data Locality:

Example in the code (strlen function):

The variable len is accessed multiple times, showing temporal locality.

The array str is scanned sequentially, showing spatial locality.

In a limited time interval a program accesses only a small part of its whole

address space

Memory locations recently accessed tend to be accessed again in the near

future

e.g. instructions and counters in a loop

Memory locations near those recently accessed tend to be accessed in the near

future

e.g. sequential access to instructions in a program or to data in an array

Even an algorithm with better theoretical complexity might perform worse in

practice if it does not use the memory hierarchy efficiently.

CS-M4-4 38

Memory access is faster when the CPU reads from addresses aligned to the type's

size.

- To ensure this, the compiler often adds padding bytes between variables in a
struct.

Example:

Resulting layout:
- Total size is 12 bytes: 1 (c1) + 3 (padding) + 4 (n) + 1 (c2) + 3 (padding).

Alternative design techniques

For example, an int (typically 4 bytes) must be stored at addresses that are
multiples of 4.

char c1 : Takes 1 byte.

int n : Takes 4 bytes but must start at a multiple of 4, so 3 padding bytes are
added after c1 .

char c2 : Takes 1 byte, but padding is added after it to make the struct's
total size a multiple of the largest alignment (here, 4 for int).

CS-M4-4 39

Computer architecture evolution and the
performance

Von Neumann Architecture

Graphically explained:

The free lunch is over

For a long time the main contribution to the gain in microprocessor performance

was the increase of the clock frequency.

End of the Trend:

The basic operation that every Processing Unit (PU) has to process is called

instruction and the address in memory containing the instruction is saved.

A Program Counter (PC) holds the address of the next instruction

fetch: the content of the memory stored at the address pointed by the PC is
loaded in the Current Instruction Register (CIR) and the PC is increased to

point to the next instruction’s address

decode: the content of the CIR is interpreted to determine the actions that
need to be performed

execute: an Arithmetic Logic Unit performs the decoded actions

Historically, increasing clock frequency was the primary way to improve
processor performance.

This allowed application performance to double every 18 months without

modifying software.

CS-M4-5 40

Systems evolved in different ways

Serial computation

Software traditionally written for serial computation

Parallel computation

In parallel computation, if two instructions have no data dependency, they can

be executed in parallel, at the same time, by two PUs

How much can you push the parallelization?

Amdahl's Law

The maximum theoretical throughput is limited by Amdahl's Law:

Around the mid-2000s, physical limits (like heat dissipation and power

consumption) stopped the rapid increase in clock speed.

Performance gains now require architectural innovations rather than simply
faster processors.

Increased number of Processing Units

More complex control

Pipelining

Superscalar execution, hardware threading

Out-of-order execution, branch prediction, prefetching, speculative

execution

Instruction-level parallelism

Deeper memory hierarchy

the sequence of instructions that forms the problem is executed by one

Processing Unit (PU)

every instruction has to wait for the previous one to be completed before

its execution can start

at any moment in time, only one instruction may execute

You would like to move from a sequence stream of instructions to this new

situation:

CS-M4-5 41

Mitigating Amdahl's Law: Gustafson's Law

Parallel Computing

embarrassingly parallel problems

Every program contains a serial part

Only one PU can execute the serial part

The speedup using p PUs is given by

S(p) =
Ts

Tp

If f is the fraction of the program that runs serially, the parallel

execution time is given by

Tp = fTs +
(1 − f)Ts

p

The speed-up becomes

S(p, f) =
Ts

fTs +
(1−f)Ts

p

→
1

f
= Smax(f)

Amdahl’s Law assumes that a problem can be split into a number of

independent chunks n that can be processed in parallel and that this number

is fixed.

Many times, the increase in the size of a problem does not correspond to a

growth of the sequential part:

Increasing the size of the problem does not change the time spent

executing the sequential part, and only affects the parallel portion.

Let f(n) be the sequential code fraction of the program:

S(n) = f(n) + p[1 − f(n)]

f(n) decreases to 0 as n approaches infinity.

The maximum speedup is then given by:

Smax ≡ lim
n→∞

S(n) = p

It's still worth learning parallel computing: computations involving

arbitrarily large data sets can be efficiently parallelized!

CS-M4-5 42

Problems where a large problem can be divided into many independent tasks that

can be executed in parallel without needing to communicate with each other.

Each task yi is computed as a function fi(xi), with xi being its independent input.

Terminology

Here some terminology

Patterns for Parallel Programming

1. Independence of Subtasks: Each computation yi = fi(xi) is completely

independent of the others, making parallelization straightforward. There’s

no data sharing or dependency between x0,x1, . . . ,x8

2. High Parallelism: Tasks can be distributed across multiple processors or
nodes, achieving maximum utilization of computational resources.

3. Examples:

Linear Algebra: Matrix-vector multiplication or diagonal element

computations.

Image Processing: Applying filters or transformations pixel-by-pixel.

Monte Carlo Simulation: Running independent simulations to estimate
probabilities.

Cryptomining: Hash computations for each candidate solution.

Weather Forecasting: Modeling distinct geographic regions independently.

Software Compilation: Compiling files in a project independently if

there are no dependencies.

Granularity: size of tasks

Scheduling: order of assignment of tasks

Mapping: assignment of tasks to a PU

Load balancing: the art of making the computation of multiple tasks end at

the same time

Barrier: a checkpoint at which all the parallel workers should wait for the

last one

Speedup: ratio between the time of the serial application and the time of

the parallel application

Efficiency: ratio of the speedup and the number of PUs

Race condition: When the result of execution depends on sequence and/or

timing of events. Result could be incorrect if this is not taken in

consideration

Critical section: Piece of code that only one worker at a time can execute

.

.

CS-M4-5 43

This chart is like a guide for organizing a parallel programming problem.

Imagine you’re trying to solve a big problem by breaking it into smaller

pieces. There are three main ways to do this:

Example: reduction

A reduction is a very common pattern in parallel computing:

Examples:

Not parallelizeable algorithm: accumulate

Count number of 5s

1. By Task: You divide the problem into different actions or tasks. For

example, if you have a list of things to do, you can either work on them in

order (linear) or break the tasks into smaller ones and solve those

(recursive).

2. By Data: Instead of tasks, you split the problem based on the data itself.
For instance, if you have a big spreadsheet, you might cut it into rows or

sections (linear) or divide it into parts that depend on each other

(recursive).

3. By Data Flow: This is about how the information moves between the parts.

Sometimes, the flow is predictable like an assembly line (regular). Other

times, it’s chaotic and depends on random events (irregular).

Large input data structure distributed across many PU

Every PU independently processes and computes results for the portion of the

data assigned to it (tally).

These tally values are combined to produce the final result

The sum of the elements of an array

The maximum/minimum element of an array

Find the first occurrence of x in an array

CS-M4-5 44

Those are 2 different ways to count numbers

This is pseudo code, in C++ you have to use Threads.

Threads

A thread is an execution context, a set of register values.

A CPU core fetches this execution context and starts running the instructions:

the thread is running

When the CPU needs to execute another thread, it switches the context , i.e. it

saves the previous context and loads the new one

Threads enable concurrency

Concurrency does not imply parallelism

Restaurant for dinner: – cooking food and preparing the tables are independent

tasks and they can be performed by different workers to gain a speed-up

A and B are concurrent but not parallel wrt to each

std::threads – Hello World

It defines the instructions to be executed and their order

Context switching is expensive

Especially if threads jump from a CPU core to another

If your program contains independent parts, they are the perfect candidates

for running concurrently

Considered all together, they are parallel

CS-M4-5 45

Fork-join

Measuring time

f() is the function that you want to measure.

Be careful, asynchronous functions return immediately: remember to synchronize

before stopping the timer.

Exercise 1

You want to sum the elements of a vector in parallel using 4 threads.

#include <thread>

int main() {

auto f = [](int i) {
std::cout << "hello world from thread " << i << '\n';

 };

std::thread t0(f,0);
std::thread t1(f,1);
std::thread t2(f,2);

t0.join();
t1.join();
t2.join();

}

The construction of a thread is asynchronous, fork

Threads execute independently

A join is the synchronization point with the main thread

#include <chrono>
...

auto start = std::chrono::steady_clock::now();

f(i);

auto stop = std::chrono::steady_clock::now();

std::chrono::duration dur = stop - start;

std::cout << dur.count() << " seconds\n";

Accumulate the sum in the variable sum

#include <iostream>
#include <vector>
#include <thread>

void partialSum(const std::vector<int>& vec, int start, int end, int& result) {

CS-M4-5 46

.

.

Data Race

 result = 0;
 for (int i = start; i < end; ++i) {
 result += vec[i];
 }
}

int main() {
 // Create a vector with 100 elements, all set to 1
 std::vector<int> vec(100, 1);

 int numThreads = 4;
 int chunkSize = vec.size() / numThreads;

 int partialResults[4] = {0};
 std::thread threads[4];

 // Start threads
 for (int i = 0; i < numThreads; ++i) {
 int start = i * chunkSize;
 int end = start + chunkSize;
 if (i == numThreads - 1) {
 end = vec.size();
 }
 threads[i] = std::thread(partialSum, std::ref(vec), start, end,
std::ref(partialResults[i]));
 }

 // Wait for threads to finish
 for (int i = 0; i < numThreads; ++i) {
 threads[i].join();
 }

 // Combine results
 int sum = 0;
 for (int i = 0; i < numThreads; ++i) {
 sum += partialResults[i];
 }

 std::cout << "Sum of vector elements: " << sum << std::endl;

 return 0;
}

A race condition occurs when multiple tasks read from and write to the same

memory without proper synchronization.

The “race” may finish correctly sometimes and therefore complete without

errors, and at other times it may finish incorrectly.

If a data race occurs, the behavior of the program is undefined.

CS-M4-5 47

std::mutex

A std::mutex (short for "mutual exclusion") is a synchronization primitive used
to protect shared data from being accessed by multiple threads simultaneously.

It helps to avoid race conditions.

Scoped Lock with std::lock_guard

Memory access patterns: cached

False Sharing

It's a performance issue in multithreading where threads inadvertently share

the same cache line but access different memory locations. Here's a breakdown

of the explanation:

Cache Line Basics:

A std::lock_guard is a RAII (Resource Acquisition Is Initialization) wrapper
around a mutex. It locks the mutex when the std::lock_guard is created and
automatically unlocks it when the std::lock_guard goes out of scope.

This ensures that the mutex is properly unlocked, even if an exception is

thrown, making the code safer.

#include<mutex>
std::mutex myMutex;
...
{

std::lock_guard myLock(myMutex);
//critical section begins here
std::cout << "Only one thread at a time" << std::endl;

} // ends at the end of the scope of myLock

A cache line is a fixed-sized block of memory used as the smallest unit of
information exchange between processor caches.

Common cache line size is 64 bytes.

CS-M4-5 48

False sharing occurs when two threads access different memory locations that

reside on the same cache line.

Performance Impact:
- Cache lines have to be moved between processor caches, which may take

hundreds of clock cycles.
- Leads to cache invalidation and frequent reloading of the same cache line.

Example Scenario:

Solution:

std::atomic

Atomic types:

Even though threads are working on different memory, modifications by one

thread force the cache line to be reloaded in the other thread’s processor.

Two threads (x and y) run on two cores sharing the same cache.

Assume:

A[500] and B[500] are arrays.

The end of A and the start of B occupy the same cache line.

Thread x modifies A[499] and loads the cache line into its core.

Thread y modifies B[0] .

This causes the cache line to be flushed and reloaded in both cores.

Result: Performance degradation due to unnecessary cache line contention.

Avoid false sharing by aligning data structures to cache line boundaries:

#include <new>

struct alignas(std::hardware_destructive_interference_size) alignedInt {
 int x;
};

alignas(std::hardware_destructive_interference_size) ensures that each variable
is aligned to a cache-line size, avoiding conflicts.

encapsulate a value whose access is guaranteed to not cause data races

other threads will see the state of the system before the operation started

or after it finished, but cannot see any intermediate state

can be used to synchronize memory accesses among different threads

CS-M4-5 49

Trivially Copyable

A type is trivially copyable if:

Characteristics:

Example:

std::atomic

Without atomicity, two threads might read the same value simultaneously,

leading to incorrect results. With std::atomic , these operations are handled
safely.

Key Features:

#include
std::atomic<int> x = 0;
int a = x.fetch_add(42);

reads from a shared variable, adds 42 to it, and writes the result back: all

in one indivisible step

It can be copied by bit-wise memory copying (e.g., using memcpy to copy its
bytes directly).

It does not need any special logic to copy its values, like constructors,

destructors, or virtual functions.

Continuous memory: The object is stored in a single, uninterrupted block of
memory, making it efficient to copy.

Copying = bit-by-bit clone: When copied, all its bits are duplicated

exactly, without calling any functions or involving the object's internal

logic.

No complex features: The type can't have virtual functions (like those in

polymorphic objects), and its constructor must not throw exceptions.

Types like int , double , or structs made up of these basic types are
trivially copyable:

std::atomic<int> i; // OK: int is trivially copyable
std::atomic<double> x; // OK: double is trivially copyable
struct S { long x; long y; }; // A struct with basic types
std::atomic<S> s; // OK: Struct S is trivially copyable

Why does this matter for std::atomic ? Atomic operations often rely on low-
level memory operations like bit-level copying or exchanging, so they

require the type to be simple.

1. Atomicity for Safety:

Operations like ++x (increment) or x = y (assignment) happen as a
single step. This guarantees that no other thread can interrupt or

access the variable during the operation.

CS-M4-5 50

Examples:

Why is this useful?

In multithreaded environments, shared variables are often accessed by multiple

threads. Without atomicity, race conditions can occur, leading to unpredictable

bugs. std::atomic solves this by making these operations thread-safe.

Here’s an explanation of the topics in the image, enhanced with details and

practical insights:

Compare-and-Swap (CAS)

CAS is a low-level atomic operation that is commonly used to implement lock-

free data structures. It works by comparing the current value of a variable

with an expected value and, if they match, updating the variable to a new

value.

2. Operator Overloads:

std::atomic provides operator overloads for common actions (like += or
|=), but only when these operations can be safely performed atomically.

1. Atomic Initialization:

Here, x is now thread-safe for operations like incrementing or assigning.

std::atomic<int> x{0}; // Initialize an atomic integer to 0

2. Atomic Increment and Decrement:

++x and x++ are atomic because std::atomic ensures that only one thread
can access and modify the value at a time.

3. Non-atomic Operations:

Operations that involve multiple steps, like x *= 2 , are not atomic and
will not compile because they cannot guarantee thread safety.

4. Atomic Read/Write:

When reading or writing to x , it is guaranteed that no other thread is
modifying it at the same time.

int y = x * 2; // Atomic read of x
x = y + 1; // Atomic write to x

5. Atomic Exchange:

std::atomic provides the exchange() method to safely swap values:
cpp int z = x.exchange(y); // Atomically: z = x; x = y;
This ensures that the swap operation is done in one step, with no

interruptions.

bool success = x.compare_exchange_weak(y, z);

x: The atomic variable.

y: The expected value.

CS-M4-5 51

If the current value of x matches y :

Key Advantages:

Data Hazards

What are Data Hazards?

Types of Data Hazards:

z: The new value.

The value is updated to z , and success is set to true . Otherwise:

The operation fails, y is updated with the current value of x , and success
is set to false .

Two threads (Thread 0 and Thread 1) attempt to update the value of a

variable using CAS.

Example:

Initial value: 5

Thread 0: Executes cas(5,7) (compare 5; if 5, replace with 7) → Success,
value becomes 7.

Thread 1: Executes cas(5,1) → Fails because the value is now 7.

Lock-Free: CAS allows for safe concurrent modifications without the need for
traditional locks (like mutex), reducing contention.

Performance: Useful in performance-critical systems where locking mechanisms

can introduce latency.

Data hazards occur when multiple threads access shared memory without proper

synchronization, leading to unpredictable behavior.

Pro: Threads can communicate using shared memory.

Con: Without synchronization, this communication can lead to errors or race
conditions.

1. Read-After-Write (RAW):

Thread reads a value before another thread finishes writing to it.

Example: A thread reads a variable x as 5 while another thread is
incrementing it to 6.

2. Write-After-Read (WAR):

A thread writes to a variable after another thread reads it, potentially

invalidating the read value.

CS-M4-5 52

Implications:

Avoiding Data Hazards

Solutions:

Example (Using Mutex):

Example: Counting the Number of 5s in an Array

Problem:

Approach:

Example: A thread reads x as 5, then another thread immediately writes
10 to x .

3. Write-After-Write (WAW):

Two threads write to the same variable at the same time, leading to loss

of one write.

Example: Thread 1 writes 6 to x , but Thread 2 overwrites it with 7
simultaneously.

Race Conditions: Data hazards result in race conditions, where the final
value depends on the thread execution order, making it unpredictable and

hard to debug.

Thread-Safe Code:

A program is thread-safe when it avoids data hazards and ensures that

shared memory access is synchronized.

Critical Sections:

Use synchronization mechanisms like a mutex (mutual exclusion) to ensure
that only one thread can access a shared resource at a time.

lock();
shared_variable++;
unlock();

The lock() ensures no other thread can modify shared_variable while the
current thread is updating it.

Given an array, count how many elements are equal to 5 using multiple

threads.

Divide the array into equal parts, with each thread responsible for a

portion.

CS-M4-5 53

Pseudocode:

Explanation:

Contention

The more threads that try to access or update a single shared resource, the

greater the contention—and thus the overhead.

Key takeaway: If every thread must frequently update the same variable (e.g.,

numberOf5), these updates act as a choke point.

Mitigating Contention

Use a shared variable (numberOf5) to count the 5s.

Synchronize access to numberOf5 using a lock to prevent race conditions.

int array[N];
int numberOf5 = 0;
int nWorkers = 4;

void count5(int workerId) {
 int beg = workerId * N / nWorkers;
 int end = beg + N / nWorkers;
 for (int i = beg; i < end; i++) {
 if (array[i] == 5) {
 lock();
 ++numberOf5;
 unlock();
 }
 }
}

The array is divided into 4 parts, and each thread processes its part

independently.

Whenever a thread finds a 5, it locks access to the shared numberOf5
variable, increments it, and unlocks.

When multiple threads (or processing units) try to update the same data at

the same time, the system is forced to serialize those updates to avoid data

corruption.

This can lead to a performance bottleneck.

Massively Parallel Execution Cannot Afford Serialization

In parallel programming, you want to divide the work among many threads so

they can run simultaneously.

If a critical piece of data must be updated often (e.g., a shared counter),

each update might be forced into a “one-at-a-time” mode—ruining the benefits

of parallelism.

1. Privatization

Give each thread or worker its own copy of the data to reduce contention

on a global structure.

CS-M4-5 54

Example Code: Counting the Number of 5s

Each thread works on its local/private version; updates to the global

data only happen once per thread or in bulk.

2. Transformation of the Access Pattern

Restructure how you access data so there are fewer shared accesses.

For instance, instead of each thread incrementing the same counter

repeatedly, each thread can accumulate a private total and then do a

single update to a global counter.

3. Avoid Frequent Transactions to/from Global Memory

Memory transactions (especially to global/main memory in a GPU or multi-

core system) are expensive.

Minimize how often you read/write to global data.

4. Use Registers and Shared Memory for Aggregating Partial Results

These faster memory tiers reduce overhead.

Summarizing partial results locally (e.g., in a register or thread-local

variable) is quicker than multiple global updates.

5. Requires Storage Resources to Keep Copies of Data

The downside of privatization is the extra memory cost (each thread has

its own copy).

Serial version

array[N]
numberOf5 = 0
for i in [0, N[:
 if array[i] == 5:
 numberOf5++
return numberOf5

Simple loop, single thread.

Parallel version (with 4 workers)

numberOf5 = 0
nWorkers = 4

count5(array, workerId):
 privateResult = 0
 beg = workerId * (N/nWorkers)
 end = beg + N/nWorkers

 for i in [beg, end[:
 if array[i] == 5:
 privateResult++

 lock()
 numberOf5 += privateResult
 unlock()

1. Each thread/worker gets a chunk of the array (determined by beg and
end).

CS-M4-5 55

Key takeaway: This approach greatly reduces contention compared to incrementing
a global counter for every single 5 found. Instead, each thread only updates
the global counter once.

4. Performance Chart and the Question

“The T=8 version does not take half the time compared to T=4. Why not?”

Reasons for Non-Linear Speedup

Increasing the number of threads to 8 does not simply halve the time from 4

threads because real-world parallel programs face overheads from

synchronization, memory bottlenecks, non-ideal load balancing, and diminishing

returns as you keep adding threads.

Load Balancing

Sometimes dividing the input data in 2 does not mean that the load has been

also divided.

If each thread processes the input data of a given spatial volume unit, some

will do a lot more work than others.

Load Imbalance with Code Example

2. A private counter (privateResult) is maintained per thread.

3. After counting within its chunk, each thread does a single update to the

shared numberOf5 (protected by lock/unlock).

Example: total load 100. If 5 workers take 20 each we have a speedup of 5,

if 1 worker takes 50, we have speedup of 2.

Non-uniform data distributions

Highly concentrated spatial data areas

Astronomy, medical imaging, computer vision, rendering

i_start = my_id * (N / num_threads); // Start index for this thread
i_end = i_start + (N / num_threads); // End index for this thread
if (my_id == (num_threads - 1)) i_end = N; // Adjust for the last thread

for (int i = i_start; i < i_end; ++i) {
 ...
}

1. How Work is Divided:

N/num_threadsN / num_threads: Each thread gets an equal share of

iterations.

i_start and i_end : Define the range for each thread based on its ID
(my_id).

The last thread (my_id == num_threads - 1) adjusts i_end to ensure all
remaining iterations are included.

CS-M4-5 56

Partitioning and Load Balancing

Parallel computing becomes useful when:

2. With N = 1000 and num_threads=32 :

Each thread is assigned ⌊N/num_threads⌋ = 31iterations.

The first 31 threads execute iterations: 0 to 30, 31 to 61, … , 961 to 991

The last thread adjusts i_end to NN, handling the leftover: 992 to 999

3. Why Load Imbalance Occurs:

The last thread processes 31 + 8 = 39 iterations, while others only

process 31.

This happens because N is not perfectly divisible by num_threads

Parallel computing All exponential laws come to an end...

The solution to our problem takes too much time (but consider Amdahl's Law)

The size of our problem is big (Gustafson's Law)

The solution of our problems is poor, we would like to have a better one

Three steps to a better parallel software:

1. Restructure the mathematical formulation

2. Innovate at the algorithm and data structure level

3. Tune core software for the specific architecture

CS-M4-5 57

Threading Building Blocks

OneAPI Threading Building Blocks (TBB) is a library proposed by Intel which allows

to express parallelism on CPUs in a C++ program.

Why not threads directly?

Direct programming with threads forces you to do the work to efficiently map

(schedule) logical tasks onto threads

Example:

Scalability

A loop needs to last for at least 1M clock cycles for parallel_for to become worth

it.

Usually, adding more cores than the limit does not only result

in performance improvements, but performance falls.

TBB uses the concept of Grain Size to control the granularity of

tasks

Parallelizing for loops can be tedious with std::thread

One wants to achieve scalable parallelism, easily

To use the TBB library, you specify tasks, not threads, and let the library

map tasks onto threads in an efficient manner

We will see just the parallel_for construct

The TBB runtime library maps tasks onto threads to maximize load balancing

and, hence, performance

for (int i = 0; i != N; ++i) {
++x[i];

}

oneapi::tbb::parallel_for(
oneapi::tbb::blocked_range<int>(0, N),
[&](oneapi::tbb::blocked_range<int> range) {

for (int i = range.begin(); i != range.end(); ++i) {
++x[i];

}
}

);

Overhead in scheduling and synchronizing many small tasks starts dominating

CS-M4-6 58

Grain Size

The grain size affects how the scheduler can distribute tasks to the available

workers (threads)

Note:

Partitioners

Automatic: TBB provides a default set of heuristics to select a good-enough grain

size.

If the grain size is 1000 and the loop iterates over 2000 elements, the

scheduler can give the work at most to 2 threads

with a grain size of 1, most of the time may be spent in scheduling

with a grain size of N, the execution is in fact sequential

Simple: the simple_partitioner allows to manually select the grain size,

passing it to the blocked_range constructor

The default is 1, in units of loop iterations per chunk

Rule of thumb: G iterations should take at least 100k clock cycles

Affinity: the affinity_partitioner can help when:

data in a loop fits in cache

the ratio between computations and memory accesses is low

CS-M4-6 59

