Introduction: what is probability?

Branch of mathematics that deals with the likelihood or chance of events

occurring
Framework for reasoning about uncertainty and randomness

Measure of how likely something is to happen, expressed as a number between 0
and 1

0 - impossible, never happen
1 - certain, definitely happen

e.g. how likely is that the sun will rise tomorrow? how likely I’11 get a 6

rolling a dice?
Do we really need probability in physics?
Several areas where this is useful:

Handle measurement error/noise in experimental data
e.g. detector readouts in high-energy physics experiments
Statistical mechanics: model collective instead of individual behavior
e.g. Maxwell-Boltzmann distribution for particle speed in gas
Chaotic and complex systems

e.g. weather forecasts: range of possibilities varying initial conditions

rather than deterministic prediction
Quantum mechanics

e.g. inherent randomness of particles behavior, wave function, Heisenberg

uncertainty principle

nature microscopic behavior, not just tool for measuring uncertainty!
Definition
We have multiple definitions of what probability is:

Axiomatic, Kolmogorov around 1933 - 3 axioms as general rules for computing
probabilities

Classical (Combinatorial), Laplace around 18th century
Frequentist (empirical), von Mises around 20th century

Subjective, De Finetti around 20th century - degree of confidence an

individual has in the occurrence of an event

Example: flipping a coin



The probability to get head in a coin flip according to different definitions is:

1. Classical (Combinatorial)

P(E) = Number of favorable outcomes  _y 4, equally likely outcomes (head, tail), one is favorable: 1/2

Number of possible outcomes

2. Frequentist (empirical)
. Number of times event E occurs
P(E) = lim ! . >
n-oo Numb of trials

flip a coin several times, count number of heads: 4/10

3. Axiomatic, Kolmogorov around 1933
3 axioms as general rules for computing probabilities
-2 sample space S ={H, T}; P(H) + P(T) = 1. Assuming a fair coin, then P(H) = P(T) = 1/2

4. Subjective, De Finetti around 20t century
degree of confidence an individual has in the occurrence of an event

> what do you think the probability of heads is?

l. Axiomatic definition

The axiomatic definition provides some rules to handle probability. From these we

can derive further properties:

From these we can derive further properties: Kolmagorov axioms:
. P(/T) =1-P(A) . Non-negativity.
_ P(E) =0 for any event E
P (A U A) =1 . Normalization:
" P(@)=0 The probability of sample space is 1: P(S)=1

. Additivity.
If By, E,, ... disjoint, then:  P(U,E:) = %, P(E)

* AcB=P(A)<P(B)
* P(AUuB)=P(A)+P(B)—P(ANB)

Axiomatic definition - limitations
Although elegant and useful, it poses a few practical and philosophical issues:

Does not define the probability of individual events

Requires a clearly defined sample space, not always the case; e.g. economics,
human behavior,

Not applicable to non-measurable sets

Build upon objective probability, not always practical; e.g. personal belief:

P («bus getting on timex»)

EXERCISE: SHOW THAT
P(AUB) = P(A)+ P(B) — P(ANB)

1. Decomposition of A U B:
The union of two sets can be split into disjoint subsets:
AUB=A+B—(ANB),

where A N Bis the overlapping region that is counted twice when summing P(A) and P(B).

2. Additivity of Probability:
By the third axiom of probability, if two sets are disjoint (have no overlap), their probabilities can be summed:

P(AUB) = P(A) + P(B) — P(AN B).



2. Classical (combinatorial) definition

Classical definition turns out useful when:

We can enumerate possible outcomes

Outcomes are equiprobable

--> e.g. we have a bag with 3 blue balls and 2 red ones. What is the probability

of drawing 2 blue balls at once?

Using axiomatic definition is impractical here, as we do not know the probability

of drawing a ball of a given color.

We can use the classic definition instead!

P(E) = Number of favorable outcomes

Number of possible outcomes

ELEMENTS OF COMBINATORICS
How to count and arrange n objects. Two key specs: order, repetitions
Permutations (order important)

w/0o repetition:
n!

Example: How many ways can you arrange 3 letters 4, B, C?
31=3x2x1=6 (ABC, ACB, BAC, BCA, CAB, CBA)

w/ repetition:

n!
kilko!. .. k!

Example: How many ways can you arrange 4, 4, B?

1
2I3_‘ T g =3 (AAB, ABA, BAA)

Dispositions (order important)

w/0 repetition:

n!

(n—k)!

Example: How many ways can you pick and arrange 2 items from 4, B, C?

il
ﬁzﬁze (AB, AC, BA, BC, CA, CB)



w/ repetition:

nk

Example: How many ways can you pick and arrange 2 items from 4, B, C with repetition?

32=9 (AA, AB, AC, BA, BB, BC, CA, CB, CC)
Combinations (order not important)

w/o repetition:

n!
Cpp= ——
P R — k)

Example: How many ways can you choose 2 items from 4, B, C?

3! 6

w/ repetition:

, (n+k-1)
mE T R (n —1)!

Example: How many ways can you choose 2 items from 4, B, C with repetition?

—_ | !
B+2-D'_ 4 _24_o s AB, AC, BB, BC, CC)

4 = = =
C&Q’m-@—m! 2021 4

Back to classical definition.. and the question:

e.g. we have a bag with 3 blue balls and 2 red ones. What is the probability

of drawing 2 blue balls at once?

Using the axiomatic definition is impractical here, as we do not know the

probability of drawing a ball of a given color.

We can use the classic definition instead! Assuming each ball is equiprobable, we

Jjust need:

How many ways of extracting 2 balls out of 57
How many of them contain 2 blue balls?
3
Cs2 (2) 3! 5! 3

P(2blueba,lls):w’2:gzﬁ.Tg!:1_0

Classic definition - limitations

Although intuitive, it poses a few practical and philosophical issues:

Tautological, self-referential: what does it mean by "equiprobable"?

What if events are not equally likely? For example, ( P(\text{"gold medal at
Olympics final"}) )

Enumerating outcomes is not always feasible or even possible! (e.g. infinite

sets)



Does not apply to empirical data (e.g. ( P(\text{"taller than 1.80m"}) )

3. Frequentist definition

Number of times event E occurs

Frequentist definition P(E) = lim Number of trials
n—-oo

Frequentist definition assumes:

Objective probabilities exist
We can collect data about a phenomenon and count how many times an event of
interest is observed

As the number of trials (data) grows, the relative frequency approaches the

true probability of the event
Experiments can be repeated under identical conditions
e.g. What is the probability of an atom decaying in the next year?
Take many atoms and put them under same initial conditions
Observe them for a year
Count how many of them have decayed

As the number of atoms grows, we have:
lim P(decay in 1 year)
n—oo

Number of times event E occurs

P(E) = r}l—>nolo Number of trials

Frequentist definition limitations

* Experiments must be repeated under identical conditions, not always possible;
e.g. difficult to control external factors

* Requires large number of trial for accurate approximation

e Consequently bad-suited for rare phenomenon, especially one-off events
4. Subjective definition

This definition is based on a quantification of the degree of belief. For this, we

use a fair bet:

«P(A) = fraction of payout, Y, one would bet on A in order not to neither win nor

lose money»

Based on personal belief and knowledge

Useful for unique, non-repeatable events; e.g. political election, betting,
Only option in many practical situations

e.g. What is the probability that tomorrow will rain?

- Weather forecasts report good weather

- Today is sunny and warm

- I have outdoor activities planned for tomorrow



—-— Pessimistic: It would be fair to bet 10€ to win 100€ as, for me, rain is 9
times more likely: P(A) = 10/100

-— Optimistic: It would be fair to bet 99€ to win 100€ as, for me, sun is 99
times more likely: P(A) = 99/100

Subjective definition limitations

e Still hard to quantify, opinions change

e Naturally variable, personal

Conditional probability & independence

Two fundamental concepts when operating on probabilities are conditional

probability and independence:

Conditional probability is the probability of an event occurring based on a
given prior knowledge. I.E. P(A|B)$ is the probability of A happening given
that we know B has already happened.

= Conditional probability is defined as: P(ANB)

P(AIB) = T30,

P(B)+#0

Example: Rolling a number lower than 3 given that the outcome is even:

—

P(n <3Nneven)

P(n < 3|n even) = P(n even)

c>|w|c>|.—\
I

Independence: Two events are independent if knowing something about one tells
us nothing about the other.

Mathematically:
A, Bindependent = P(AN B) = P(A)P(B)

Note that if A, B are independent, P(A|B)= P(A)
Important: independent disjoint P(ANB) =10



Frequentist VS Subjective probability and Bayes’
Theorem

Outline

Bayes’ Theorem
Frequentist VS Bayesian statistics

Examples

How to update probability based on new evidence?

Bayes’ theorem provides a nice mechanism to update probability in light of new

evidence:

P(B|A)P(A)
P(B)

* Prior Probability, P(A): Initial belief before seeing evidence

* Marginal Likelihood, P(B): Overall probability of the evidence

e Likelihood, P(B|A): Probability of evidence given the hypothesis
* Posterior Probability, P(A|B): Updated probability after observing evidence

P(AIB) =

Key Insights:

Bayes’ Theorem updates beliefs based on new evidence

— resembles how we think
It accounts for both the strength of the evidence and prior knowledge

Note: prior belief/knowledge is not necessarily subjective probability
Law of total probability

Express the probability of an event B in terms of a disjoint partition of the

sample space S:

Partition the sample space S into disjoint subsets FE; so that: UE; =8

Then a subset B of S can be expressed as:

B=Bns=8n(JE)={JBNE)



Leveraging conditional probability,

we can re-write:

=P(U;(BNE)) = ZP(BNE) =|ziP(B|E,-)P(Ei)

Here we used the definition of conditional probability:
the probability of an event occurring,
presumption,

P(B)

Law of total probability

is a measure of
given that another event (by assumption,
assertion or evidence) is already known to have occurred

« Scenario: A bag contains 10 marbles: 6 red, 3 blue, 1 green.
* Events:

o A: Drawing a red marble.
o B:Drawing a marble that is not green.
Steps:

1. Calculate P(B):

Marbles not green = 6 red + 3 blue = 9.

Marbles not green 9
P(B) = =
(B) Total marbles

10
. Calculate P(AN B):

P(A N B) = Probability of drawing a red marble (all red marbles are not green)

P(ANB) = Red marbles 6 3

" Total marbles 10 5
3. Calculate P(A | B):

Using the formula for conditional probability:

3
Thus, Bayes’ theorem becomes:
S P(B|A)P(A) Bayes’ THM using
@l )_ZiP(B|Ei)P(E£) law of total probability

This is a graphical rapresentation

E is the evidence

H is the hypothesis



Bayes’ theorem: example

Suppose you want to know the probability of having a disease (A) given that you

tested positive (B) for it:

Prior Probability (P(A)= P(disease)): reflects our belief in the hypothesis
before seeing any evidence, e.g., probability of the disease in the
population, independent of the test

Likelihood (P(B|A) = P(positive test|disease)): how probable the evidence is, assuming
the hypothesis is true, i.e., the probability of testing positive, given that
you actually have the disease

Marginal Likelihood (P(B) = P(positive test)): probability of the evidence, i.e.,
overall probability of testing positive, including both correct and incorrect
outcomes

— law of total probability:
P(B) = P(B|A) - P(A) + P(B|-A) - P(—A)

Posterior Probability (P(A|B) = P(disease|positive test)): updated probability after
observing the evidence, i.e., probability of having the disease given the test

result
In practice:

Suppose 1% of the population has the disease - P(disease) = 0.01
Suppose the test has:

90% sensitivity, i.e., it correctly identifies 90% of diseased testers -
P(positive test|disease) = 0.90

[o)

5% false positive rate, i.e., 5% of healthy people test positive -
P(positive test|—disease) = 0.05

We can compute the posterior probability using Bayes' Theorem:

P itive|di P(di
P(disease|positive) — (positive|disease) P(disease)

P(positive)
Where P(positive) is the marginal likelihood:
P(positive) = P(positive|disease) P(disease) + P(positive| ~disease) P(—disease)
=0.9.0.01 4 0.05-0.99 = 0.0585
Therefore:

0.9-0.01
P(disease|positive) = 00585 0.1538 =~ 15%

Exercise



A beam of particles consists of a fraction 10~ electrons and the rest photons. The
particles pass through a double-layered detector which gives signals in either zero, one or both

layers. The probabilities of these outcomes for electrons (e) and photons () are
P(0]e) = 0.001 and P(0]~) = 0.99899
P(1]|e) =0.01 P(1]+) = 0.001
P(2|e) =0.989 P(2|v) =1075.
(a) What is the probability for the particle to be a photon given a detected signal in one layer
only?
(b) What is the probability for a particle to be an electron given a detected signal in both layers?

What probability interpretation should we use?
We have seen several definitions. Which one should we use?

Axiomatic definition
Rules to handle probability mathematically
Always applies but not practical as we do not have P(E;)
Classical
Useful when we can enumerate favorable and total outcomes
Outcomes are equiprobable
Not practical (or even unfeasible) with large/infinite sample spaces
Frequentist
Useful when we can perform repeated experiments under the same conditions
Note: the more trials, the better the approximation!
Subjective
Allows dealing with one-off or rare events
Based on personal belief and knowledge, therefore questionable

— Bayes’ theorem makes it more rigorous and mathematically grounded

What is statistics?

Statistics is the science of collecting, analyzing, interpreting, presenting, and
organizing data.

Provides tools and methodologies to make sense of raw data and draw
conclusions

— turns data into meaningful information

Key areas:

Descriptive Statistics: summary and description of main features in data,

e.g., mean, median, variance, standard deviation, coefficient of variation



» Inferential Statistics: goes beyond the data to make predictions or inferences

about a larger population
— hypothesis testing, confidence intervals, and predictions based on observed

data
o Prediction: W hat will happen given my model and the given data?

» Inference: What can I learn from the data about my model?
Statistics helps us answer questions like:

*» Is a new drug effective in treating a disease?
» What i1s the average strength of a material under stress?
e Is the observed signal a new particle, or due to random background

fluctuations?

Statistics VS Probability

Deduce
what will
Potmbdion of ot gy happer

= HDMFE.MDVQ '

Probability:
theory & models

predictive

Statistics

Collect data ﬁ
and infer b

something

about the
A - world or
4 l_ descriptive ml)de[s

» [

Frequentist statistics

Frequentist statistics is a framework that:

* Builds upon the frequentist definition of probability: long-run frequencies of
events
— repeatable experiments
e The concept of probability is strictly tied to data:
» We cannot answer: "P(Higgs boson exists)?"
« P(Higgs boson exists) is either 0 or 1, we do not know which
°» We cannot answer: "P(\text{Higgs boson exists} | \text{data})?" either
o What we can do: "P(\text{data} | \text{Higgs boson exists})?"

° Accepted theories/models are those most compatible with experimental data.

Bayesian statistics

Bayesian statistics is a framework that:

* Builds upon the subjective definition of probability: degree of belief about a

hypothesis



Exploits Bayes' theorem to update our knowledge based on data:

probability of the data assuming prior probability, i.c.

hypothesis H (likelihood) e before seeing the data
. P(z|H)m(H)
P(H|Z) = —
[ P(Z|H)r(H)dH
posterior probability, i.e., N\ normalization involves sum
after seeing the data over all possible hypotheses

— Actually measuring P(Higgs boson exists|data)!

However, the prior choice is subjective.

Frequentist VS Bayesian statistics
In summary, two alternative interpretations:

Frequentist framework works on the likelihood of data given hypotheses:
P(data|H)

Bayesian approach works on prior update given data: P(H|data)
Frequentists take decisions based on the likelihood.

Bayesians take decisions based on the posterior.



Random variables
Outline

Random variables
Examples of univariate distributions

Moments and characteristic function

A random variable is a mathematical object that maps a numerical value to each

outcome of a random process:

A R.V. X is composed of a probability triplet:

Sample space, S: set of all possible outcomes

Event space, FE: set of all events, i.e., all subsets of S

Measurable function, P: maps each event to its probability
Example:

R.V. X represents the random process of rolling dice

Sample space: S=1{1,2,3,4,5,6}

Event space: E={{1},{2},...,{1,2},{1,3},...}

Probability function, P:F — R that associates to each event its

probability — distribution

Notation

A Notation

Capital latin letters are used to denote random variables, e.g. X is RV. for coin flip
Their realizations ave denoted with the corvesponding lowercase, e.g. x,="tails”, x,=heads”

Two types of R.V.s depending on the sample space:

Discrete Continuous
* Sisfinitely orinfinitely countable * Sisuncountable
* Pis called probability mass function, p (pmf): * Piscalled probability density function, f (pdf):
- PX=x)=p; - PX=x)=01"
= LyesPX=x) =1 — P(X€[xx+dx]) = [ f(x) dx
- fsf(x) dx=1

* Cumulative distribution function, F (also

R L. .. . * Cumulative distribution function, F (cdf):
«funzione di ripartizione»):

X
PX <) = f f(2)dz = F(x)
* Alternatively define pdf as:

dF
Foy = £

PXSH)= ) plx)=F@

xX; Sx

MA MATER STUDIORUM
NIVERSITA DI BOL



Cumulative distribution properties
The cumulative distribution has several important properties:

* Non-decreasing
¢ Right-continuous
» Step function for discrete R.V.s
* May be a step function also in the continuous case

lim F(z) =0, lim F(z) =1
T—00

T——00

CDF of Dice Roll

Y
s

-—
O—
0.8

Cumulative Probabilit
o
o

Dice Roll Outcome

For continuous R.V.s, given constants a,b such that a <b:
b
F(b) —F(a) =Pla< X <b) = / f(z)dz

Note: in practice, we can use < and < indistinguishably, as adding a point to the
integral does not affect the result.

A similar result holds for discrete R.V.s, but more attention needs to be paid to

inequalities.

ol

Examples of DISCRETE random variable distributions
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Examples of CONTINUOUS random variable distributions

1 1(x-p)?
R
oV2n

— 2=05 T
4 — 2=10

iale = -Ax
Exponential: f(x) = 1e Normal: f(x) =

— =15

pdf

9u0:(X)

Cdf
B, (x)

Distributions enclose all information about a random variable.
However, sometimes we do not need all that information.
Can we retrieve some synthetic measure of relevant features?
Central tendency
Spread
Symmetry
Behavior in the tails

Also useful for quantitative comparisons

Summary statistics: Central tendency and spread

Two useful properties often used are:

Expected value, u:

Discrete:
EX] =z pla)

Continuous:

o0
E[w]:/ zf(z)dz
—0o0
E is a linear operator called expectation.
— weighted sum (or integral), with probability (or probability density) as
weight
— measures central tendency of the distribution



Variance, o2:

Discrete:

VIX] = Y (@ - ) p() if s E

x)

2
Continuous: VX7 - Z (k- &) P

Vi = [ (@ wfa)de

o0

Variance measures spread around the expectation.
Expectation operator properties
The expectation is a linear operator, which implies several properties:

ElaX] = aE[X] where a is a constant value.
EX+Y]|=E[X]+ E[Y]
This is true irrespectively of whether X,Y are independent.
If X 1Y, then E[XY]= E[X]E[Y]
However, E[XY|=E[X|EY]+ X 1Y
VIX] = E[X?] - (E[X])*

]

v =E[(4-E0)’|
= E[x* - 2XEQT + E(X)?]
= E[x?] - 2E()E(X) + E(X)?]
=E(X?) - E(X)?

Proof:

with the red highlight being constant, so replaceable with p.

Moments of a distribution:

In general, we can look at moments as summary statistics. For a continuous R.V. X

, the moment of order m about ¢ is defined as:
o0
pn = ElX =0 = [ (@ 0" f(o)da

—0o0

where ¢ is a constant value.

For a discrete R.V. X, just replace the integral with a sum and the

pmf.

pdf with a


Mobile User


IMPORTANT MOMENTS
Raw (initial) moments - c=0:
pm = E[X™]
The order 1 (m = 1) moment is the expected value:
n= E[X]

— central tendency of a distribution

Central moments - c=pu:
pm = BE[(X — p)"]

The order 2 (m = 2) moment 1s the variance:

— spread around pu

Standardized moments - c= u:

El(X — )™

o-m

Hm =

The order 3 (m

3) moment is the skewness — measures lopsidedness.

The order 4 (m = 4) moment is the kurtosis — measures tail heaviness.

Exercise

Consider a continuous random variable X and two constants, «,f. Starting from the

definition of expected value, show that:

ElaX + 8] = aE[X] + 8
V[aX + 8 = a?V[X]

Characteristic functions

The characteristic function ¢x(k) of an r.v. X is defined as the expectation value

of e*X (similar to the Fourier transform of X):

ox() = Bl = [ " e f(2)da

Useful for finding moments and deriving properties of sums of R.V.s.
For well-behaved cases (true in practice), the characteristic function is

equivalent to the pdf and vice versa, i.e., given one, you can, in principle,
find the other.



Moments from the characteristic function

Given a random variable Z, we can derive the moments from its characteristic

function. To find the m-th moment:

* Differentiate mtimes ¢,(k) Jm
* Evaluateatk=0 _ b ( )

dkm

dm / 2
= — [ €7 f(z)dz
k=0 dk
L i'lﬂ Z‘UJ f(z)d:

— im
= 1 H,
where 1, = E[X™] is the m-th initial moment of z.

— From the characteristic function, we can derive moments even without an explicit

formula for the pdf.

Exercise

X and Y are two independent random variables, and Z=X+4+Y is derived as
their sum. Prove that the characteristic function ¢z(k) is the product
¢z(k) = ¢px(k)opy (k).

Does this hold for a general linear combination of independent random

variables?

i.e., if Z:Zanj, then ¢Z(k‘):Hq§Xj(ajk).



Popular discrete and continuous distributions
Outline

How can we use R.V.s in practice?

Examples of R.V.s: Uniform, Bernoulli, Binomial, Poisson, Exponential,

Gaussian, Student’s t, chi square

More examples of R.V.s: Beta, Gamma, Breit-Wigner (Cauchy), Landau

l. Uniform distribution: discrete

Example: detecting alpha particles emitted from a radioactive sample, assuming
isotropic emissions

oy

! [
P\

We divide the space into 8 equal regions, each covered by a detector
— 1in which region will we observe the next emitted particle?

Cannot tell in advance: random process!

Each region has the same probability since isotropic

Mathematical formulation:

X is R.V. describing the region where the alpha particle is emitted
Sample space, S: {1, 2, 3, 4, 5, 6, 7, 8}

— countable, so X is a discrete R.V.

e pmf, p(X==2x)= %
« cdf, F(X<z)?

- lim, , o F(z) =0

- lim, o0 Fz) =1

- Flz)=%, zc8

for all z€ 8

Expected wvalue:

BE(X)=1-

|
00| —

Variance:



V(X) =) (z - E(X))? p(z) = 5.25
Is there easier way? Yes:

VIX] = E[X?] - (E(X))”

In general, the discrete Uniform distribution describes random processes with a
finite number of outcomes, all equiprobable (e.g., fair die roll, randomly pick

one out of n elements)

So X ~ Uniform(a,b) and the sample space, S: [a,b]={a,a+1,a+2,...,a+n—1}

— n elements from a to b, spaced by 1 unit
Then

pmf, p(X=xz)=21 for all z€§
cdf, F(X <z):
-0, z<a
- If:;]:ll for a<z<b
1, >0

Expected value: E(X)= “TH’

(b—a+1)2-1
12

Variance: V(X) =
, . . . N eika(lieik(b—aﬂ))
* Characteristic function: (k)= et (i=e®)

l. Uniform distribution: continuous

Now imagine we have a single detector covering all the space around the sample

We have that X ~ Uniform(a,b) and the sample space, S: [a,b]

— this time is the continuous interval! e.g. [0,2n7]

pdf, f(X:m):ﬁ for a<zxz<b; 0 otherwise
cdf, F(X<u1):

-0, z<a

- 2 for a<z<b

—a

= o

, x>0b

« Expected value: E(X)= GT*’?

* Variance: V(X) = %



, . . eika(liez‘k(b—a))
* Characteristic function: @(k):m

2. Bernoulli distribution
Example: a single coin flip

Only two possible outcomes: heads or tails

— denoted by 1, "success", and 0, "failure", respectively

We denote by p the probability of success, e.g., p=0.3.

Mathematical formulation:
X is R.V. describing the outcome of a coin flip, X ~ Bern(p) with Sample space, S:

{0,1}

pmf, p(X =1x):

p for x=1

(1-p)=gq for z=0
cdf, F(X <uz):

0, <0

1—p for 0<2x<1

1, z>1
Expected value: E(X)=p-1+(1—-p)-0=p
Variance: V(X)=p—p*=p(1l—-p)
Characteristic function: @(k) =1—p+ pe™

When to use: Use the Bernoulli distribution for experiments with only two possible
outcomes (e.g., success/failure) where each trial is independent and has a fixed

probability of success.

2.1 Binomial distribution
Example: n coin flips

n independent trials with binary outcomes: heads or tails

Each flip has the same probability of success, p

Mathematical formulation:
X is R.V. describing the number of successes in n independent coin flips,
X ~ Bin(n,p) with Sample space, S: {0,1,...,n}

— countable, so X 1s a discrete R.V.

pnf p(X =k)?
Note: X =>Y;, where Y; ~ Bern(p)
Recall that, if A 1L B then: P(ANB)= P(A)P(B)



Recall that, if A, B disjoint: P(AUB)= P(A)+ P(B)
Can we derive P(X =0)? And P(X =1)? And P(X=2)? And P(X =k)

So we end up with

p(X =k) = (Z)p’“(l -p)" "

which makes sense because

The number of ways to arrange k successes in n trials is the binomial

coefficient
The probability in n trials has to be multiplied for each k success and (n—k)

not success

Binomial Distribution (n=10, p=0.5)
0.25F

0.20

°
—
=]

Probability
o
=
o

0.05F

0.00

S 77 umberofsuccemses
cdf, regularized incomplete beta function

Expexted value: E[X]=mnp

Variance: V[X]|=np(l—p)

Characteristic Function: ¢x(k) = [1+ p(e® —1)|"

When to use: Use the Binomial distribution for a series of independent trials with
two outcomes each (e.g., success/failure), where the probability of success is
constant across trials, and you want to model the number of successes out of a

fixed number of trials n.

3. Poisson distribution

Example: Studying the decay of a radioactive isotope with a known average decay

rate.

We have a sample of radioactive material.

Question: How many decays will occur in the next minute?
The process 1s random, so we cannot tell in advance.
However, we know the average decay rate, denoted by A (e.g., 5 decays per

minute) .



Mathematical formulation:

X is an R.V. representing the number of decays in the next minute,
X ~ Poisson()).
Sample space, S=1{0,1,2,3,...}
This is infinitely countable, so X is a discrete R.V.
pmf: $$
p(X = k) = \frac{\lambda"k e”{-\lambda}}{k!} \quad \text{for } k \in S

l[[Pastedimage20241228160810.png|400]]

Moments:
Expected value: E(X)=)\.
Variance: V(X)= A\
cdf: Calculated using the regularized gamma function.

Characteristic function:

p(t) = Y

When to use: The Poisson distribution is suitable for modeling random counting
processes where rare events occur at a known average rate (e.g., phone calls in an

hour or accidents per day) .

If X ~ Poisson()\), then:
A is the average count in the time interval, also called the intensity.

Example: Expressing A as:
A=r-t

where r is the event rate, and t is the duration of the time interval.

Here, A remains constant over time.

Sample space, S=N={0,1,2,...}

Relationship between Poisson and Binomial distributions

Counting resembles repeated observations of whether an event has occurred

(success) or not (failure).

Poisson: models counting processes for rare events.

Binomial: counts the number of successes in a series of independent trials.
To understand their relationship, consider:

The Binomial distribution counts the number of successes in independent
repeated trials:
p: probability of success in a single trial.

n: number of trials.



Hint: Try comparing the characteristic functions:
Binomial characteristic function:
epin(k) = [1+p(e™ —1)]"
Poisson characteristic function:

@Poisson(k) = e/\(eik_l)

By letting p::-% and considering the limit as n — oo, the Binomial distribution

approaches the Poisson distribution.

In general the Binomial converges to the Poisson for n—+oo0 and p—0

4. Exponential Distribution

Example: Studying the decay of a radioactive isotope, known average rate.
What is the waiting time between successive decays?
We know: 5 decays per minute, on average ().
Mathematical formulation:
X is R.V. for the waiting time between successive decays, X ~ Ezp(}).
Sample space, S: [0,00).
= uncountable, so X continuous R.V.
pdf, p(X =z) =X, >0
cdf, F(X<z)=1-€e*, 2>0

Exponential Distribution

10r —— Exponential (A=1)
0.8
0.6

041

Probability Density

0.2r

0.0r

0 2 4 3 8 10
X (Time)

Characteristic function: ¢(t) =

Expected value: ECY):-%

L
22

Characteristic function: ¢(t) = 5

Variance: V(X) =

In general, the Exponential distribution describes the waiting time between two
events (e.g., decay time, arrival time of next customer in a queue, time to next

call at call center).



Property of exponential distribution: Lack of Memory

In general, lack of memory indicates that "the waiting time for the occurrence of

an event does not depend on how long has passed up to now".

= past does not influence the future.

More formally:
P(T >t+ AT >t) = P(T > At)

In practice, this means that "the probability that the event takes longer than
t+ At given that we already waited t is the same as the probability that it
takes longer than At starting from 0".

= i.e., the fact that we already waited t, does not change the probability

of waiting another At time.
The exponential distribution has this property = Exponential is memoryless.

The exponential distribution has this property > Exponential is memoryless
Note that:

. . PT>t)=1-F(t) =
Imagine T~ Exponential(}), then: 1—1+e M =g
P(T>t+At NT>t) P(T>t+At)
P(T>t+AtT>t) = =

P(T >1t) T P(T>t)
e~ A(t+AD) —
— — Mt

e —At

Example: Imagine our survival time is exponentially distributed. Then:
P(T >90+ 5T > 90) = P(T > 5)

= Probability that a 90-year-old person survives 5 years is the same as a

newborn!
Poisson and Exponential Relationship

Poisson and Exponential distributions model different aspects of the same process.

On one side: counting event occurred in At — Poisson.

On the other: waiting time between events — Exponential.
So, are these R.V.s related?

Let T be the waiting time between two successive events.
Let N be the number of events occurring starting from T =t.

What R.V. describes the waiting time T7?

T A
/'/\

We can work on the cdf:

F(t) = P(T < t)



Now, let us focus on the event A =/no event up to T = Atr.
P(A) = P(T > At) =1— F(At).
This also means that N=0, so P(A)=P(N=0).
But N is a counting process, with intensity A =rAt, so N ~ Poisson(}\).
Hence:
(AAt)?

P(A) = P(N =0) = Te*“ — e Mt =1 F(At)

- = F(At) =1 - e *A* = Exponential cdf!

A Poisson/Exponential
relationship

The time between two consecutive
Poisson events follows an
exponential distribution.

Interpretation:

The Poisson distribution counts how many events occur in a fixed time.

The Exponential distribution measures how long you wait between events.

The rate A\ connects the two:
In the Poisson distribution, A is the average number of events per unit
time.
In the Exponential distribution, A is the rate of occurrence (or

intensity) of events.

5. Normal Distribution
Example: Optical aberrations and lens defects.

We focus a beam of light through a lens that, due to imperfections, produces
random deviations from the ideal focal point p
Deviations are symmetrical, i.e., they are equally likely to be to the left or
right of the ideal focal point.
Small deviations are common, while large deviations are rare.
Question: What is the actual focal point’s position?
Mathematical Formulation:
Let X be the random variable for the position of the actual focal point.
Sample Space: S = (—00,00) , meaning X is continuous.
Probability Density Function (pdf):
The distribution is bell-shaped and centered around ( \mu ), with the

following pdf:

(z—p)?
f(X p— ;1;) = ;67 202
vV 2mo?

where p is the mean, and o is the standard deviation.




Normal (Gaussian) Distribution PDF (mu=37, sigma2=4)

0.08

e
o
&

100 observations

Sample frequency

0.04

0.02

35 40
Focal position

* Cumulative Distribution Function (cdf):
» Starts at 0, gradually increases, accelerates at a point, then slowly
approaches 1 as & — 00.

* No closed-form solution, requires numerical computation.

° Expected Value:

BE(X) =p
e Variance:

V(X) =0’
°» Characteristic Function:

¢(t) _ ei,utf%azt‘2

General Properties of the Normal Distribution
+ Standard Normal Distribution: Any normal distribution X ~ N(u,0?) can be

transformed to the standard normal distribution Z ~ N(0,1) by:

_ X
N g

Z

e This distribution has mean 0 and variance 1, useful for standard
computations.
¢ Probability Intervals:
* 68% of data falls within =+lo,
¢ 95% within +20,
¢ 99.7% within =30,
© 99.99994266% within 450 , setting a high threshold for new discoveries.

Law of Large Numbers

The Law of Large Numbers states that the average of independent and identically

distributed (i.i.d.) random variables converges to their expected value as the

sample size increases.



Let ( X{,Xs,...,X, ) be 1.i.d. random variables:
E(X;)=p and V(X;)=0? for ( j=1,...,n ).
Define X, =1 i X
— EXa)=E (31, 2) = 2E(S0, %) =230, E(X) = tnu =
v Xj 1 1 a?
= V&) =V (T17)) = 5V (EaX) = 5T V&) = 5o2 =2
* Hence if we take the limit forn — oo:

— — 2
- mE®X,) =u and limV(X,) = lim*~=0

n—oo n—oo n-oo

- X, converges to a constant value i as n increases, independently of the initial distributions

The law of large numbers iv very powerful

My estimation of pi

Monte Carlo Simulation to Estimate Pi
Estimated Pi: 3.14800

1.00

0.75 1

0.50 -

0.25

0.00 q

—0.251

—0.50 1

—0.75

-1.00 4 Outside Circle *

~1.00 —0.75 —0.50 —0.25 0.00 025 050 0.75 1.00

the thing is that, the more points I generate, the more precise I'll get, this

means that the error on the prediction will decrease:

The x 1s generate randomly in uniform distribution

The y 1s generate randomly in uniform distribution

To estimate the m i counted the number inside the circle. This corresponds to do
the average of a quantity that is 0 if the point is inside the circle and 0
otherwise, that is randomly distributed.

This means that the limit on the average of this quantity is
N—oo

1 N T
lim N;I- =E[l] =,

Why the expected value of I is w/4 ?

This is because



Thus, the probability that a randomly chosen point lies inside the circle is the ratio of the areas:

Ag T
P(point inside circle) = Amile =1
square

4. Expected Value of I:

Since I = 1 when the point is inside the circle and I = 0 when it is outside the circle, the
expected value of I (i.e., the average value of I over many trials) is simply the probability that a

point is inside the circle. Therefore:

E[I] = P(point inside circle) = %

That's it.

Central Limit Theorem (CLT)

The Central Limit Theorem (CLT) asserts that the sum or average of a large number
of i.i.d. random variables follows a normal distribution, regardless of the

original distribution.
Intuition

A process influenced by many independent factors can be seen as the sum of
those factors.
With many factors, the distribution of the sum or average approaches a normal

distribution.
Formal Statement

Let Xi,Xs,...,Xn, be i.i.d. random variables with E(X;)=p and V(X;)=o2.
Define X, =+>" X;.

Xn*/Jz

The standardized form Z = o/ T

approaches N(0,1) as n — co.

Notes
* Forfinite n, approximately valid to the extent that the fluctuation of
the sum is not dominated by one (or few) terms
Examples:
— Good: velocity component vx of air molecules

— Ok: total deflection due to multiple Coulomb scattering (rare large
angle deflections give non-Gaussian tail)

— Bad: energy loss of charged particle traversing thin gas layer (rare
collisions make up large fraction of energy loss, cf. Landau pdf)

* Forfiniten, if Xj ~ N, then the pdf of §,, is exactly Gaussian. In fact:

. 1
5. (0) = 1—[ oy () = l—lem,»:-ig;tz _
i i

int—LgZe2 i1 Y-ty (522
- eZ(z,u}t 2”}t ) - elz‘.(ullt 22‘.(0'})1:
41 Pn U’:

6. Chi-Squared Distribution



Definition: Chi-squared distribution describes a positive definite random

variable, obtained as the sum of squared independent standard Gaussian.
Applications: Used in hypothesis testing and confidence intervals for
variance.

Properties:
XVvXQOO, where v is the degrees of freedom, representing the number of
squared components.
Sample Space: S =[0,00)

Probability Density Function (pdf):

1
X — = — (V/2)71 7"”/2
fX=2) = e ® ¢

f;»(.’l?) Xi
0.5

ol

0.4

0.3 1

> 7 o
T L L
© oW N

0.2

pdf

0.1

0.0 - - —
6 7 8 7©

[0 &

o 1 2 5 4
Expected Value:E(X)=v

Variance:V(X) = 2v

t-Student Distribution

Definition: Similar to the Gaussian distribution but with heavier tails,

suitable for smaller sample sizes.

Applications: Used in hypothesis testing and confidence intervals for

mean.

Properties:
X ~t(v) , where v is the degrees of freedom.
As v— 00 , t approximates N(0,1)
Sample Space: S = (—00,00)

Probability Density Function (pdf):

w(rr(é) (1 _>T

Expected Value: E(X)=0 for v>1 ; otherwise undefined.

| 4

Variance: V(X)= % for v>2 ; infinite for 1<v <2




How do multiple factors and their combinations
influence a process?

Outline of Topics

Modeling processes with multiple influencing random factors: How multiple
random variables can be used to describe complex systems.

Multivariate Random Variables: Joint, marginal, and conditional probability
distributions.

Transformations of Random Variables: Techniques for deriving distributions of

functions of random variables.

When dealing with systems influenced by more than one random factor, we use
multivariate random variables. Instead of analyzing each variable in isolation,

multivariate analysis examines their combined behavior.
Example: Weather Forecasting Model

Consider a model predicting weather in a coastal city. In this case, two

observable random variables could define the daily conditions:

( X ): Daily maximum temperature in degrees Celsius (°C).
(Y ): Relative humidity percentage (%) .

Our question: What is the probability of observing a particular combination of
temperature and humidity?

Since both ( X ) and ( Y ) influence weather conditions, we cannot consider them
independently. Instead, we use a Joint Probability Distribution to describe the

likelihood of specific combinations of temperature and humidity.

JOINT PROBABILITY DISTRIBUTION

For two random variables ( X ) and ( Y ), the joint probability distribution (
f(X, Y) ) quantifies the probability of simultaneously observing particular values
of both ( X ) and ( Y ). For instance, if ( £(25, 80) ) represents the probability

of a 25°C day with 80% humidity, then we can formally express this as:

P(AﬂB)z//f(w,y)d:cdy



MARGINAL DISTRIBUTION

The marginal distribution focuses on the probability of observing values of one
variable while ignoring the influence of the other. For example, to find the
probability of a specific temperature regardless of humidity, we integrate over

all possible values of ( Y ):
P(4) = [ fle,9) dy= 1(2)

Marginal pdf: intuition

= ©

: L8
& 8 10 0 2 4 5 8 W Intuition:

z 05 Think of marginalization as a projection
© | of the joint pdf onto one of the axis

Conditional Distribution

If we want to know the probability of humidity ( Y ) given a fixed temperature ( X

), we use the conditional distribution:

= Frxyle) = 189

f(z)

This ratio normalizes the Jjoint probability to ensure that probabilities sum up to

P(ANB)

P(B|A) = 0

one over the conditional distribution's domain.

b Notes:

Conditionals can be expressed as:
. _ Fxv(ey)
h(y1x) e
. = Ixrlxy.
86y =",
y? Hence Bayes theorem becomes:
alaly) = NI
frO)

Also, ifX LY = f(x,y) = fy(x)fy &)

Conditional pdf: intuition

ok

A Intuition:

Fix a conditioning R.V., e.g. X

Study the joint distribution over Y only in
° at the fixed value of X

To get probabilities, divide by the
marginal of X to ensure normalization,

eg. f, hylxdy =1



Multivariate moments extend the concept of moments (like mean and variance) to
cases involving two or more random variables. These moments help quantify the

joint behavior of variables.
Mixed Moments

For two random variables X and Y with means pxy and py, respectively, mixed moments

of order (m,n) are defined as:

Vm,n = E[(X - /J'X)m(Y - IU'Y)n]

COVARIANCE
Most used is: Covariance

The covariance between X and Y, a commonly used mixed moment, measures how much X

and Y vary together:

Cov(X,Y) = El(X — px)(Y — puy)] = E[XY] - B[X]E[Y]
If Cov(X,Y)>0 , X and Y tend to increase together; if Cov(X,Y) <0, one increases
as the other decreases.

Correlation Coefficient

The correlation coefficient p standardizes covariance to a value between -1 and 1,

representing the strength and direction of a linear relationship:

Cov(X,Y
_ Cov(x.Y)

Ox0y

p=1: Perfect positive correlation
p=—1: Perfect negative correlation
p=0: No linear correlation

AT

Note:if X L Y = f(x,y) = fx(x)fy (y¥). This implies that:
E[xY] = f [y reyaxdy = [ 2 [ yrody = ECOEW
X Y

- Substituting in Covariance formula: COV[X,Y] =0
- Thisinturnimplies pyy = 0 - uncorrelated

Note: the inverse is not always true, i.e. uncorrelated DOESNT MEAN
independent.

Clear.
Covariance Matrix

In the multivariate context, we use a covariance matrix to summarize the variances

and covariances of a set of random variables. For a vector X = (X, X,...,X,):

Diagonal elements represent variances, i.e., Vj = Var(X;)

Off-diagonal elements represent covariances, i.e., Vi = Cov(X;, X))



Correlation: intuition

Correlation quantifies the linear relationship between two variables. p=0.75 p=-0.75

1 T T Y 10

(a)

* The correlation coefficient p ranges from -1to +1:

* p=+1indicates perfect positive correlation (a and c)
* p=-1indicates perfect negative correlation (b)
* p=0indicates no linear correlation (d)

* As|p|increases, the scatter plot becomes more tightly

clustered around a line: T — ¥ o
— Strong positive/negative correlation (cases a, b): as x increases, s © 5 s
y tends to increase/decrease (respectively) 5 - 5 s

— Very strong positive correlation (p = 0.95): Tight linear relation 4 f 4
— Weak positive correlation (p = 0.25): Loose, scattered relation 2 o = 1 2

Key points: . .
* Correlation measures strength and direction of linear relationships p=0.95 p=0.25
* Non-linear relationships may have low p despite strong dependencies (e.g. y=x"2)

Correlation does not imply causation - check spurious correlations website for funny ones! y

Example

Dependent variable can actually have null correlation coefficient!

* Considertwo random variables X, Y such that:

— X ~Unif(-1,1)

- Y=x?
* Clearly, they are dependent as Y is a function of X = knowing X gives us direct access to the exact value of Y
* However, it can be shown they are uncorrelated

Exercise
Show that X, Y are uncorrelated

a+b _ —1+1 _

Note that E[X] == 5

0

> COV(X,Y) = E[XY] — E[X]E[Y] = E[XY] = E[XX?] = f_llx;dx =0

One important example of multivariate distributions is the multivariate Gaussian

(normal) distribution. Suppose X = (Xi,Xs,...,X,) consists of i.i.d. normal

variables, each with mean p and variance o%. Then X has a multivariate Gaussian

distribution:

X~ N(p,V?)

where:

p is the vector of means for each variable.
V is the covariance matrix.
The probability density function (pdf) for a multivariate normal is:

1 1 Ty -1
X=x;uV)= e~z (x—w)'V H(x—p)
£ V) CSREGEE

where |V | 1s the determinant of V



Special case, n=2 components:

1
flx1,22,; p1, o, 01,02,p) =

2mo109 v'fl - ,q2

2 2
T — 1 T2 — 2 Ty —p\ (T2 — g2
() + (=) = () (=)

where p = cov[x,, x,)/(c, 5,) is the correlation coefficient

1
>‘e"p{*z(l )

Functions of Random Variables

Transforming random variables often yields new variables with their own
distributions. Suppose Y =g(X), where g is a function of X. The pdf of Y is given
by:

fr) = fx(@)| | wherea = g7 ()

Example

Let X be a uniform R.V. such that X ~ U(0,1). Then considerits transformation Y = g(X) = 2x.
Whatis the pdf of Y?

Solution
Since g is monotonic, then: fy(v) = fx(x) z—; !
Hence to compute the pdf of Y we need:
B y 0 1
g =3 X~ U(0,1)
dg™'(y) _
BT 1/2

. . 1 - 1 1
By substituting: fy(y) = 2 U(O,l)(g 1(y)) =>Uon (%) =3

1/2'—‘
Note: the range also changes when applying g: )

0
* g(0)=0, g(1)=2 > Y ~ U(0,2) Y~ U(0,2)

What if the transformation is not monotonic? i.e. what if not unique inverse?

* In general, fY(y)dy = defX(x)dx

2
* Ifghas notauniqueinverse, then we simply include in dS %
all dx intervals correspondingto dy, i.e. dS = [dx,] U [dx,]
Example L
LetY = g(X) = x2. It follows that: -
g =1y dy
dg7'(y) _ ;1 -1 _ dy _ 4
o =17y 2—>dx—2\/7 dx, = dx, =l
Hence: dS = [\/_ f+d—y] U [_\/—_ﬂ -y
. Y,Vy 209 y Zﬁ' y X
_ x| Fx(=Vy)
And fy () =% T am

In general, let X be a R.V. with probability function f(x) and let Y = g(X) be its
transformation. Assuming g(z) is invertible (but the inverse is not necessarily

unique), the probability function of Y can be derived in 3 steps:



* Foreachy, findthe setA, = {x: g(x) <y}
* Find the cdf, Fy(y):
F@=P¥<y)=P@X)<y)=P{x;g(x) <y = fx(x)dx
Ay
* Finally, derive the pdf by differentiating:
) =F®)

Example

Let X be a RV. with fy(x) = e *forx > 0. LetY = g(X) = In(X) be its transformation. What is the pdf of ¥?

Solution
» Observethatg=1(y) = e¥
* Therefore: A, = {x:In(x) < y}, orequivalently: A, = {x:x < g~ (X)}
* Find the cdf:
Fy(y) =P(Y<y) =Pn(X) Sy) =P(X<e¥) =Fx (&) =1-e®
* Finally, the pdf of Y is:

dF

Alternatively
* Note that g() is monotone, so:

d -1
£ = fx(g= o)) |“"T(y)| = e1e¥

Let X =(X1,X2,...,Xn) be a random vector with a known joint probability density
function fx(x). Let Y =g(X) be a new random vector where each component of
Y = (Y1,Y2,...,Yn) is a function of X.

Then the pdf of Y can be expressed as:

d
det o

fr(y) = fx(x) dy

where

x:g’l(y) is the inverse transformation (assuming it exists)

g—; is the Jacobian matrix of partial derivatives

we take the determinant of the Jacobian.
Examples

Let X, Y be two random variables with a known joint probability density function
fxy(z,y). Let Z=X+Y be a new random variable. What is the distribution of Z?

In general:

fz(z) = /ny(:c,z —z)dx



However, if X and Y are independent, we can further decompose:

fa(2) = / fx(e) fr(z — z) da

that is the convolution formula.

Let X be a random variable representing the measurement of a physical quantity,
and let Y =g(X) be its transformation. Suppose V(X) is known, which quantifies the

error on the measurement of X. What is the variance (error) of Y?

In principle, we could compute the variance of ¢(X) analytically by exploiting the

definition. However, this is often impractical:

We may not know the distribution of X

Calculation could be too complex for direct computation.
Alternatively, we can use the error propagation formula for approximating VTYﬁ:

Use first-order Taylor series expansion of g(X) around E(X)=p
9(X) ~ g(p) +g'(1) (X — )
Then:
V() =E[¢d (1) (X - p)?] =d¢n)?*V(X)

This means the variance of Y is proportional to the variance of X, scaled

by the square of the derivative of g¢g(X) computed at pu.
In general, if X =(X{,X,,...,X,) and Y =¢g(X), then:

dg \° dg \? dg d
V(Y) = (—d;1> V(X)) 4+ (T}? ) V(X)) +2) —= L Cov(Xi, X))
n it ot O

Note: no assumptions about the distributions of X;.
Limitations

While convenient in practice, several assumptions must hold for error propagation

to be effective:

9(X) is smooth and can be well-approximated by a linear expansion.
Uncertainties in the random variable are relatively small, so higher-order
terms in Taylor expansion can be neglected.

Variances and covariances of X are known (or can be estimated).



Approximation breaks down if g() nonlinear
over a region of size comparable to the o,

Examples
Example 1
Let X1, X2 be two random variables and define Y =X;+ X2 and Z = X:1X5.

By applying error propagation formulas, we get:

V(Y) = V(X1) + V(X2) + 2 Cov(X1, X3)

0Z \? 8z \?* 8Z 07
V(Z) = (3X1) V(Xl) + (8_)(2> V(XQ) +2(9_)(1 e COV(Xl,Xz)

If X; and X2 are uncorrelated:
Add errors quadratically for sum, Y (or difference).
Add relative errors quadratically for product, Z (or ratio).

Do not apply when correlations are present.
Exercise: Derive the formula for V(Z).
If pux, = E(X1) and px, = E(X2), the formula becomes:

V(Z) = p%,V(X1) + p%, V(Xs) + px, px, Cov(X1, X5)

Example 2

Let X;, X, be independent continuous Uniform(0,1) random variables. Find the
density of Y = g(Xl,Xg) = X1 +X2 'XQ.

Solution:

Define the cumulative distribution function Fy(y):

Fy(y) = P(Y < y) = P(9(X1,X;) <y) = P((z1,22) : g(x1,22) < y) = //le,X2($1,$2)d$1 dzx,



Solution

© By =PY<y) =P, Xp) ) = P2 xD): g x) s y) = [ fAyf(xp x2)dxdx;

* Whatis A,?
- 0<y<1 1

- 1<y<2
©,y)
0

0

0

0<y<1

1

1

(y-1,1)

(Ly-1)



Statistical inference: estimators and information

Outline

How can we learn from data?
Estimators

Maximum Likelihood

Statistical inference, or «learning», is the process of extracting knowledge about

a phenomenon from its own data.

What is the distribution of the data? And what are its properties?

Typically, we cannot observe the whole population (limited time, resources,

process not fully observable).

We resort to a «sample» instead and only observe limited evidence/data.
Derived questions:

How to derive properties or models based on partial information?
How to quantify uncertainty?

How to test hypotheses and make predictions?

Parametric vs non-parametric inference

There are several approaches to statistical inference, depending on assumptions.

key distinction is between parametric and non-parametric inference.

Parametric
We assume the process is described by a function with a finite set of

parameters:
X ~ F(z;0),F = f(x;0): 0 € ©
Where:
F is a family of functions parametrized by 6.
0 is the fixed (there is a true value that describes it, is not random) but

unknown (vector of) parameters.

® is the parameter space, i.e., all allowed values for 6.

or

A



Goal: Inference about distribution parameters 6.

More powerful if assumptions hold :)

Incorrect i1if assumptions are violated : (

Non-parametric
We do not assume a specific functional form for F. It is modelled by a non-
finite number of parameters.

This means that F is modelled by a non-finite number of parameters

we do not make assumptions on F

F has no parameter
It's more flexible and we allow a more number of parameters.
Goal: inference about data characteristics, e.g. median as central tendency

More flexible, robust to outliers/deviations :)

More complex and less powerful than valid parametric alternatives : (

b Note:

In this course we will focus on parametric inference

Parametric vs non-parametric inference: example

Measuring the speed of sound in air:

We take 50 measurements under identical conditions.

Parametric

Assume measurements follow a Gaussian distribution:

1 (z—p)?

oV 2r

e 2 :peR,o>0
Estimate the parameters p, o. Inference is based on N(u,0).

X ~ F(x;0) = f(z;1,0) =

Non-parametric
No assumption on underlying distribution F. Use median and interquartile range
(IQR) for central tendency and spread.

Use median as measure of central tendency

Use interquartile (IQR) range for spread -> our description depends on

summary statistics of observed data: median and IQR

Parameters of interest vs nuisance parameters

Imagine we know that we can describe the distribution F with a set of parameters,

now more than 1: X ~ F(z;0 ={e,(})



In all the parameters we chose parameters in which we are interested in and others

that we think are not that interesting.

a: parameters of interest (e.g., w).
B: nuisance parameters (e.g., o), which determine the shape of f(z;u,0) but are

not of interest.

Example: Gaussian distribution but we are interested in the estimation of the

expected value of the population, not how spread it is.
From population to sample

Population, P

N Sample, S
Typically we cannot observe the whole population: Hence we resort to sampling

Population: entire group of individuals/entities under study
Often too large/impractical to observe
E.g. all electrons in the universe, all possible decays
Population quantities are referred to with Greek letters: 6, u, o
Sample: subset of the population
Useful to make inference without observing all population
E.g. electrons revealed in a specific experiment
Sample quantities are referred to with Latin letters: X, s
Must be representative of the population -> different sampling methods
ensure different properties (not covered here)
Statistical units: individual elements of the population/sample

Basic entities on which measurements/observations are made

E.g. single electron
Inference -> retrieving information about the population starting from a sample
Statistical inference: sub-problems

Estimating parameters (point estimates, interval estimation).
I know the model and I want to estimate its parameters
Hypothesis testing.
Compare two models/hypotheses
Goodness-of-fit.
Measure how well a model/hypothesis fit the data (a model VS all the

others)



How do we estimate our parameters of interest, 6?
We define a statistic as a generic function of data: t=t(X) =t(Xy,...,X,).

Examples:

Parameters of interest: expected value (u), variance (o?).
Related statistics: sample mean (X), sample variance (s2) .

How do we choose good statistics as estimators?

Bias and precision

We are conducting a statistic and we are conducting some inference assuming that x

is distributed in a F distribution.

Bias: The bias of a statistic #(X) as an estimator for 6 is:
B(t(X)) = E(t(X)) — 0

The bias measures how close, on average, the statistic is to the true
parameter value: Measures the accuracy of the statistic.
Ideally, we would like the bias to be as low as possible

A statistic with 0 bias is called unbiased estimator of 6

Precision: The precision of a statistic #(X) is:

1

precision(t(X)) = W

The precision measures the dispersion of the statistic around its expected
value.
Measures the wvariability of the statistic.

A statistic with highest precision is called efficient estimator of 6:
Volt(X)] < Vo[t"(X)]
for any t*.
Accuracy vs precision

Accuracy: How close the estimator is to the true value.

Precision: How variable the estimator is.

®®

Unbiased and Biased and Unbiased but Biased and
precise precise low precision low precision




Mean Squared Error (MSE)
A measure of the quality of an estimator is given by the MSE:
MSE(t(X)) = Ep [(t(X) - 6)*] = V(¢(X)) + B(¢(X))*

Trade-off between bias and variance.
* Derivation: MSE(9) = E; (0 - 0)*]
-E; [(o —E; (0] +E; 8] - 9)2]

—E, [(a ~E;101) +2 (- £(61) (5;10] - 0) + (=(6) —a)’]
E[@ EW]]+EP9 EoD@ﬁ}ﬂﬂ+%K%@—ﬂ1
2 - 2 -
=E; [(e E; (6] ]+2 (5161 - [o E; [o]] (;161-0) E; (6] — 6 = const.
=K [( E; (6] ]+ E; (6] - E[a]-mé[e])+(ﬁé[é]-a)2 E; (6] = const.
[(o il0)"] + (5il01-0)°

Var; (6) + Bias; (4, 6)*

b Bias/Variance trade-off:

In practice, we cannot minimize both bias and variance simultaneously - compromise between accuracy and precision!

Consistency and sufficiency

Let X ~ F(z;0), F(f(z;0):0 € 0O) and t(X) be a statistic. The statistics #(X) could have
the property of

Consistency: A statistic #(X) is consistent if:
t(X) =6, asn—
Sufficiency: A statistic #(X) is sufficient for 0 if:
P(X[t(X),6) = P(X]t(X))

all information about @ is already contained in t(X)

it embeds all useful information for the parameters of interest

Summary of data statistics properties

Let X ~ F(x;0), F(f(z;0):0 € ©) and t(X) be a statistic. Then ¢(X) will be good as an

estimator for 6 when it satisfies the following properties:

Unbiasedness: On average, does the statistic hit the true parameter value?
E(t(X)) =0
In practice, we want low bias (ideally 0), which means low systematic
error: b= E((X))—#6
Efficiency: How much does it vary around the true value?
V(t(X)) <V(t*(X)), for any t*
In practice, we want as little variability around 6 as possible.
Consistency: Does the statistic converge to the true value as the sample size

increases?



t(X) — 6, that is:
lim, o P(|t(X) — 0] <€) =1

For n — 00, we have that the estimator converges to a fixed value equal to

the true parameter (i.e., zero variance).

Sufficiency: Does it embed all useful information for the parameters of

interest?

P(X[t(X),0) = P(X|t(X)) V6

This means that all information about € is already contained in #(X).

Point Estimation

Imagine we know that X ~ F(z;0), F{f(z;0):0c ©}. Point estimation revolves around

providing a single "best guess" for a quantity of interest.

What can you 'best guess' are, for example:

Parameter of a distribution F
The whole distribution, e.g., cdf/pdf of F
A regression function r(X) assuming that X ~F

A prediction of a future value X

Notes:

By convention, we denote our estimate as 6

0 is unknown but fixed, and is the true value.

~

However, 0 is a random variable as it depends on data
How can we provide a point estimate for a parameter 6?2

Method of moments

Maximum likelihood

l. Method of Moments

Let X ~ F(x;0) , F{f(z;0):0<c O}, where 6={6;,...,0x} is a K-dimensional vector of

parameters. Then, the method of moments estimator én can be derived as follows:

Define the j-th moment a;j, 1<j<K as a;=aq;(0) = Ey [X] = [2/dFy()

The corresponding sample moment &; will be: &;= — . X]

Then 0, is defined as:

C‘~'1(9An)

o2 (6,)

I
S)

I
Q>
o



aK(én) = d’K

System of K equations with K unknowns

In practice, we estimate each moment by its sample version

Example:
Let Xi,...,X, ~ Bernoulli(p).
Then: a1 = E(X1)=p and &1 = %Z

X
Therefore: ﬁn:~%§:rXi

2. Likelihood function and Maximum Likelihood

Let X ~ F(z;0), F{f(z;0):0<c 0O}, where 0={0;,...,0x} is a K-dimensional vector of
parameters.
Given a random vector X ={X;,...,X,} of i.i.d. random variables, we can write the

joint density as:
P(X) = f(X;0) = [ ] £(Xi;6)
i=1
Then, the likelihood function is defined as:
n
L.(6;X) = [ [ £(Xi50)
i=1

Nothing but the joint density as a function of the parameter 6 instead of the
data X
L,:0 —[0,00)

The likelihood is not a density function — does not integrate to 1

Describes how likely it is to observe given data X under F depending on a

specific parametrization 6
degree of agreement between observed data and F parametrization by 0

The method of maximum likelihood provides estimates that maximize the likelihood

of the observed data:
OuiE = arg max L,(6;X)
The basic assumption is that what we are observing is not rare

This assumption means that the observed data X is typical or representative of

the underlying distribution.
Parameter estimates are retrieved through optimization of the likelihood
function with respect to 6:

Derive with respect to 6

Set equal to zero and check which zeros are maximum points



Rewrite the Likelihood

By definition, for independent random variables the likelihood can be written as a

product:
n(6; X) = Hf X;;0)

Taking the logarithm is convenient for differentiation

— we typically work on log-likelihood instead:
£(6) = log Ly ( Z log f(Xi;0)

Note that optimal point do not change!

£(
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FORMAL: Maximum Likelihood estimation

More formally, let X ~ F(z;6), F(f(z;0):60¢€®), where 6= (61,...,0;) is a K-dimensional

vector of parameters. The maximum likelihood estimator of 0 is defined as:

0y = argmaxL,(0; X)
0

In practice, to calculate Oyrr we can:

Compute the log-likelihood: £(6) = logLn(6;X)
Derive the log-likelihood: S(f) = MW)

- 8(0) typically referred to as the score function
Set S() =0 and solve for 6 to find critical points
Check which critical points correspond to a maximum — second derivative

negative at Oyrg

Example:
LetXy, ..., Xn ~;p Bernoulli(p). Then: £,,(p) = [T, p*i(1 —p)*%i = pS(1 —p)™ 5, where S = }; X;

* tn(p) =Slogp+ (n—S)log(1—p)

de(p) _ S -S
+ SolveS(p)=0-p =§=% (Note: a2 {’(p)

" = —n is always negative)



What is information in statistics?

The concept of information in statistics is related to the "knowledge" one can

derive from data.
Example: You have performed an experiment and collected some data:
What is the information data provide about the model?
In general, any measure of statistical information should satisfy some properties:

The more data you collect, the more information you have. This improves

parameter estimates or model understanding.
Related to the parameters of interest.

Information should focus on what you’re studying. Data irrelevant to your

parameters should not increase information.

Should be related to precision = the larger the information, the better

the precision.

Note: Data reduction typically implies information loss.

= How to go from raw data to high-level summaries (reconstruction) minimizing

information loss?
Shannon Information
Shannon’s definition relates information to uncertainty.

Let X be a random variable with K possible outcomes zi,...,Tx, each with
probability p;. Then the information coming from observing an outcome z; is defined

as:

1
I(z;) = log (p_> = —log pi, (base b arbitrary)

7

= The smaller p;, the higher the information.
Example: talking on the phone

ly old saying "Da" with probability 1
3y old saying 500 words with probability pi,ps,...p500

More info in the second

Starting from the above definition, Shannon information associated to the random

process X is defined as its expected information:
K
H(X)=E[I| =- Z pi log p; (also called entropy)
i=1

Intuition: The greater the entropy, the higher the information we gain by

observing the random process.



Fisher Information

Fisher’s definition links information to the knowledge a sample provides about an

unknown parameter.

Let X=(Xy,...,X,) be a random vector representing a sample of n observations, and
let L(6;X) be the corresponding likelihood function depending on the parameter 6.

Then the information carried by the sample about 6 is defined as:

0 -5 (242Y] 5 Suscion) ]

Under quite general regularity conditions, we have: E7r%g§)}::0.

Hence, 1(9):3Var(gg%§l).

= Fisher information is related to the variance of the score function.
Properties:

* Fisher information is non-negative.
« It plays a central role in the Cramér-Rao lower bound, which provides a lower

bound for the variance of unbiased estimators.
In addition, if #(6;X) is also twice differentiable with respect to 6, then:

10~ 5[ 2162]

062

= Fisher information is also linked to the curvature of the likelihood.

Intuition: Higher Fisher information implies that the data provides more

information about the parameter, resulting in a smaller variance of the estimator.

Wide Likelihood, low information Sharp Likelihood, high information

Cramér-Rao Theorem (also Rao-Cramér-Frechet or RCF bound)

This theorem is a powerful tool that sets a lower bound for the variance of

unbiased estimators for a parameter 6.

. Let § be an unbiased estimator for a parameter 6.

« Let f(X,0) be the probability distribution of the data X.



Then the Cramér-Rao theorem shows that:

~ 1
Var(0) > ——
= The inverse of Fisher information is the lower bound for the variance of any

unbiased estimator of 6.
Note: This provides a reference setting for evaluating the efficiency of an
estimator:

A I1(6
efficiency(6) = (6)

<1

Var(f)
When efficiency(d) =1, then 0 is said to be an optimal estimator for 6 (also known

as the Minimum Variance Unbiased Estimator or MVUE) .

Maximum Likelihood Estimators: properties

Under fairly weak assumptions, MLE estimators have several nice properties:

Equivariance:
Let 6 be the MLE estimator for 6, and let g¢g(-) be a bijective transform
(one-to-one) .

Let 7y be a different parameterization such that = g(f).

~

Then 4 = g(6).
= We can easily find MLE for transforms of the parameter 6, e.g., useful
when changing units, scale, or parametrization.
Consistency: As the sample size increases, the MLE converges to the true
parameter value.
Asymptotic efficiency: Among all well-behaved estimators, the MLE has the
smallest variance as n — oo0.

Asymptotic Normality:

V(6 —0) 5 N(0,1(6)™")

As the sample size increases, the MLE estimator distribution approaches a
Gaussian centered around the true 6.

Note: I(f) is the Fisher information computed at the true value 6 (often
computed analytically).

“Often” a function of a sufficient statistic.

BONUS: MLE song for «tuning parameters» Cringest moment in class



Examples of Maximum Likelihood: estimators for
popular distributions

Let X be a random variable that models the decay time of a radioactive nucleus,
such that:

X ~ Exp(})

where A is the average number of decays per year.

What is the MLE for A?
— fOGA) =2
— Given arandom sample X,, = {X;, ... X;;} of ID components, then we can write the likelihood as:
n n

sy <[ T <[ Jre
i=1 i=1

— Taking the log and deriving with respect to A this becomes:
d

n n n
i n
o) = ) [log(d) - AX,] = nlog) =2 ) Xy —E—sm) =7-> X,
i=1 i=1 i=1
— Finally, setting S(1) = 0 and solving for A:
n

n — n _
S =—-in =0— S MIE =" _
A s =1 Xi
i=1

Is MILE ynpiased estimator for A?

_ MLE] = || = _1

EAF] = £ [ | = nk |
— Itis possible to show thatforY = Y[, X;, where X; ~ Exp(4), then Y ~ Gamma(n, 1)
— Also,Z = % ~ Inv — Gamma(n, 1), for which we know that E[Z] = ﬁ

— Finally, E[AMF] = nE[Z] = n—:l

> AMLE js 3 biased estimator for A!
- However, all MLE asymptotic properties hold

Let X be a R.V. that models the decay time of a radioactive nucleus, such that:
X ~ Exp(7)
where 7 is average lifetime in years.
What is the MLE for 7?

— 1= A"1isan invertible function of the parameter A
— We can leverage the equivariance property of MLEs: g(A)MLE = g(AMLE)

— Hence: TIF = (JMIE) " = ¥
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Is MLE ynpiased estimator for t?

— Bythe Law of Large Numbers we know that the sample mean is an unbiased estimator for the population mean,
i.e. E[X]=u
— inthis case u is the average lifetime in the population (all radioactive nuclei of that type)

= tMIE js unbiased estimator for T

Let X be a R.V. that models the measurement of the speed of light in a given
medium. Repeated measurements yield slightly different results that can be

described by a Gaussian distribution, with unknown mean parameter u:
X ~ N(N7U2)

where p is the true measurement value and o? (Nuisance parameter, we assume this

is fixed and known a priori) 1s the instrument resolution

What is the MLE for u?

“—_ Nuisance parameter, we assume this is fixe

{_(X_-;ﬁ} T
. 2y &
f(X- u,o ) - mf[Zn} and known a priori (e.g. instrument specs)

202
Then we can write the likelihood as:
n n
L(u; Xy, 0%) = l_lf(u:Xi) = (ZMZ)_?e“{
i=1
Taking the log and deriving with respect to i this becomes:
d
n

n 1 i XX —w
{)(ﬂ. 02) = —Elog(Znoz) - (F)Z(Xl - ﬂ)z _— S(ﬂ) = %

Finally, setting S(u) = 0 and solving for y:
n
X
> (K- ) = 0 ——— T SR LIRS
7

MK, - m}

202

n

For the Law of Large Numbers we already know uMLE is unbiased

2

Note: although we did not need o° to compute MMLE, the standard errors of

puMLE st£i11 depend on it

What if o2 is unknown and we want to estimate it?

2 o Qx*
OvLe =5
We already know this is a biased but consistent estimator for o?

-> MLEs are not always unbiased for finite samples!

Let X be a R.V. that models the dark count of photons of our detector, i.e. the
number of false positive counts our detector registers due to thermal noise and
background effect. Since the detector works very well in general, we can assume
dark counts are rare events, so the process can be described by a Poisson

distribution, with unknown intensity parameter A.
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What is the asymptotic distributions of AMLE?
From MLE asymptotic properties we know that: 2M.E - N(A, I‘l(ﬂ))
— We assume regularity conditions hold (that is generally the case)
Hence, we just need to derive the Fisher information to express the variance of the asymptotic distribution

2
— Q) = —E [;73(;1)]
—Ayx -Ap%; g AT X
- pn =2, L) = Ty S = e ™2 05 X) = —n +10g(A) By X, — N1, log ()
: [ i=1"1
dz

d
- S() = fAX) = —n+3TE, X;; o) = -5 I, X

daz
Now we have general formulas, but in practice we do not know A = estimate through AMLE

_ JMLE — ¥ _ |4 _ e[ nX]_1
FMIE = X: 1(2) = E[ﬂzf(/l)L:ﬂm = E[ 22 =2

Finally, we can approximate the asymptotic distribution by sample estimates: AMLE —__  N(X,X)
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1. Hypothesis testing

Outline

How to test hypotheses?
Hypothesis testing

Examples

Hypothesis Testing:
A structured approach to evaluate claims about a population using sample data
under uncertainty.

Competing Hypotheses:

- Null Hypothesis H): Represents the given assumption or status quo.
- Alternative Hypothesis H,: Challenges the null hypothesis.

Determine whether data are compatible with the null hypothesis based on a figure

of merit (e.g., test statistic, p-value).

Components:

Null Hypothesis Hj:
Hypothesis to test (e.g., "The mean temperature of a star is 5000K").
Alternative Hypothesis H;:

Competing hypothesis (e.g., "The mean temperature of a star is not
5000K") .

Test Statistic:

A figure of merit summarizing sample data to assess H O.
Significance Level (a):

Confidence level (common choices: 0.05, 0.01; in physics: 5c\sigma) .
p-value (p):

Probability of observing the data (or something more extreme) under H 0.
Decision Rule:

If p<a: Reject H 0.

If p>a: Fail to reject H 0.



Frequentist Approach:

"Assume Hy is true and look for evidence in the sample that contradicts this

assumption."
Analogy: Courtroom Trial

Hy: The defendant is innocent.
H;: The defendant is guilty.
If evidence is strong enough (low p-value), we reject Hy (innocence).

If evidence is weak (high p-value), we fail to reject Hy (no conviction).

Let X describe a random process with probability distribution f(X,0), where 0 is

unknown.

Null Hypothesis (H)j):
Hypothesis about the value of 6, e.g., 6=46.
Assumes that the true value of 6 is a specific value 6.
This is the hypothesis we want to test.
Alternative Hypothesis (Hi):
Hypothesis about the parameter value that differs from Hy.
Examples:
Simple hypothesis: H;j:0=0;.
Composite hypothesis: H;:0#6y or Hy:60>6,.
Data Representation (X):
Let X ={Xi1,...,Xn} represent nm IID realizations of the random variable X.

Example: Observations of a single particle, event, or whole experiment.

Key Idea: Hypothesis testing determines a decision rule to evaluate whether

observed data X are compatible with Hj.

Decision Basis

Ideally, base decisions on P(Hj|X), but this is not possible in a frequentist

approach.
This is because the frequentist framework considers probabilities as long-
run frequencies of events. In this approach, P(HOIX) (the probability of
the null hypothesis given the data) does not have a meaningful
interpretation because hypotheses are treated as fixed (true or false),
not random variables.

Instead, use the likelihood P(X | Hy) and ask:
“If Hy is true, what 1is the probability of observing the sample data X?”

Reason: If sample data are very unlikely under H;,, we question the validity of Hj.



In practice, we need two elements to apply this principle:

Test Statistic (¢(X)):
that is a characteristic of sample data used as a benchmark.
Must be based on sample data.
We must know how to compute P(t(X) | Hp).

Significance Level (a):
Minimum probability threshold we are willing to accept.
Outcomes rarer than a lead to rejection of Hp.

Also called the "size of the test."

The key is to choose a test statistic for which we know P(¢(X) | Hp).

When that is the case, hypothesis testing consists in two steps:

Compute the p-value:

The probability of observing outcomes at least as rare as the sample data
(i.e., equally or more unlikely).

Compare the p-value with the significance level a:
If p-value <a— Reject Hj.

If p-value >a — Fail to reject Hj.

Decision Rule: If the observed data is rarer than the significance level a,

reject
the null hypothesis Hp.

Interpretation: Statistically significant evidence against Hj.

Visual Representation

P(t(X)|H,)

s f,\ﬁka_ <A
.

Here 2 examples, a simple one and a more complex to use also the t(z).

Example 1



Hypothesis testing: example

Imagine you are playing heads or tails tossing a fair coin with a friend. You choose to always bet on heads, but
after 10 trials you only won once, so you start wondering whether the coin is actually fair.

* How can we model the coin flip trials? = Binomial: X ~ Bin(n, p)
*  Whatis our null hypothesis? Hyp:p = 0.5

» Andthe alternative? Hy:p > 0.5 Although arbitrary, the significance level must
be set before looking at the data/p-value!

How can you check your doubts? = hypothesis testing can help! E
Note:

* How do we compute the p-value?
— The p-value is the probability of observing outcomes at least as rare as the sample data
— Inour case, under the null hypothesis (coin is fair), the only other outcome at least as extreme as having 9 tails in 10
flips is having 10 tails
— p—value = P(X =9|Hy) + P(X = 10|Hy) = P(X =9|p = 0.5) + P(X = 10|]p = 0.5)
= (190) 05059 + (18) 0.5 = 0.0107

— What s the significance level? This is something you can decide

+ One one side, you do not want to lose money, so do not set this too low - otherwise, in case H, is false you will lose a lot of
money before collecting enough evidence against it

* Onthe other: you do not want to argue with your friend, so do not set this too high = otherwise, you might reject H, due to
random fluctuations even if it is true

* a = 0.05is commonly used, i.e. we reject outcomes rarest than 5% under H,
* Decision?p — value < a > reject Hy: the coin is unlikely to be fair based on observed data

Example 2
Physics Example: Particle Lifetime Hypothesis Testing

We are testing whether a particle decays with a mean lifetime ofry=2.5us based on

experimental data.
Hypotheses

Null Hypothesis (H_0): The particle's mean lifetime is 79 =2.5us
Alternative Hypothesis (H_1): The particle's mean lifetime is different from
T # 2.5us

This is a two-tailed test because we are testing for deviation in either

direction.
Data Representation

Observed decay times of n =30 particles are recorded.

Sample mean decay time: t=2.3us

The decay times are assumed to follow an exponential distribution, which leads to

the sample mean t being normally distributed for large n:

70

fNN'(M:To,U:ﬁ)
where:
u=T9=2.5pus
o= % :%s0.457,u5

Significance Level



We choose a significance level of a=0.05, meaning we will reject HO if the

probability of observing such an extreme result (or more extreme) is less than 5%.

The test statistic is the sample mean:

3

HX) ==

3|~
-
I
i)
&~
S

We compute the probability of observing a mean decay time at least as extreme as

the observed value t=2.3us, under HO.
The p-value is:
p=P(t<23usort>2.7us)

since the normal distribution is symmetric

2.3
PE<23)= | ft)dt

where f(t) is the PDF of MN(2.5,0.457). This is done using the cumulative
distribution function (CDF).

The p-value is p = 0.661.
Conclusion: Since p>a, we fail to reject H 0.

Interpretation

There is not enough evidence to conclude that the particle's mean lifetime differs
from 179 =2.5us.

The observed data is consistent with the null hypothesis.

Here instead a second way to look at hypotesis testing.



2. Hypothesis Testing: Rejection Regions

Another way to interpret hypothesis testing is by defining a critical region or

rejection region RR,:

The rejection region includes rare outcomes under H,.

The probability of the critical region is the significance level «, i.e.,
P(X € RR, | Hy) < a.

Decision Rule
If the observed outcome belongs to the rejection region, reject Hj.

The rejection region can be expressed in terms of a critical value k:
P(XERRQ|H0)§Q - P(X>k|H0)§a
k separates the rejection region from the rest of the sample space.
It can be X >k or X <k depending on the test.

To choose an appropriate rejection region, consider Hj:

Place RR, where outcomes are rare under H; but common under H;

Example:
P(X € RR, | Hy) is low, but P(X € RR, | H1) is high.

This framework ensures we reject Hp only when there's sufficient evidence favoring
H,.

Example:



Imagine you are testing a simple null hypothesis, Hy: 8 = 8,. The probability distribution of the data under H, is
reported in the plot below. Graphically indicate RR, for each of the following alternative hypothesis scenarios:

© H1: 9 = 91 > 90
— This suggests rare outcomes under H, but /[XI Ho)
“common” under H; are values in the right tail

N Hz:9<90 ’/.
— Justthe opposite situation =2 left tail h

5T
X

* Andfor/i.:0 # 64?

— RR, includes both tail, halving its size at each side to
ensure a global significance level of &

- H, and H, are said one-sided alternatives, while H; is called two-sided st

Regarding the final decision of a test, there are some subtle nuances to bear in

mind

Rejecting Hj:
Does not confirm H, is false or H; is true.
Indicates sufficient evidence against Hy and in favor of Hj.
Failing to reject Hj:
When p-value > a:
Either Hy is true.
Or Hy is false, but the test has low power.
Misinterpretation of p-value:
p-value is not the probability of the hypothesis: p-value # P(H,|X)
Represents the probability of observed data under Hy: P(X|H,)
Informally, it measures evidence against Hj.
Can be seen as the smallest significance level at which Hy is rejected.
Scientific relevance:
Statistically significant results may lack practical significance.

Example: 0 # 6y but with negligible impact on the theory.

Type-I errors: Reject Hy when it is actually true.
Happens with probability P(X € RR,|Hp) < a.
Called the significance level or size of the test.

Interpretation of a: Probability of erroneously rejecting Hj.



Type-II errors: Fail to reject Hy when H; is true.
Happens with probability P(X € Q\ RR,|H;) = 8.
1—8 is called the power of the test.

Interpretation of 1—(: Probability of correctly rejecting a false null

hypothesis when H; is true.

‘g'{,: \Ho\ "’MRK&

o FxIH)

Uniformly Most Powerful test (UMP)
A test is said to be Uniformly Most Powerful (UMP) if:

It maximizes the power for all possible values of the alternative hypothesis.
For a fixed significance level a.

In other words, no matter the true parameter value under H;, the UMP test

gives the best chance of rejecting Hp.

This is equivalent to requiring a single critical region to ensure maximum power

independently of the alternative hypothesis, leading to a model-independent test.

In High-Energy Physics (HEP), we often construct tests such that:
Hy: Standard Model (or "background only").
a: Probability of rejecting Hy when it is true (false discovery rate,
typically 50) .
H,: An interesting alternative theory (e.g., SUSY, Z’, etc.).
We aim for high power with respect to any possible alternative new
theory.
Unfortunately, there is no general guarantee of having a model-independent
test.

Solution: Select a critical region that maximizes the power for a specific
H;.

Intuition
In brief, UMP tests can be summarized as follows:

Power of a test:
The probability of rejecting Hy when H; is true.

Ideally, we want the power to be as large as possible because this means

the test is sensitive to detecting true differences.

Why is UMP desirable?:



A UMP test guarantees that, regardless of the true value of the parameter

under Hj;, the test will have the highest chance of detecting the
alternative hypothesis.

Competing tests:
Different tests can have different power properties.
A test might be powerful for one value of H; but not for others.

A UMP test, if it exists, ensures that no matter what value H; takes, it
is the most powerful option.

How to find an UMP test?

The Neyman-Pearson lemma provides an elegant way to find a UMP test for testing
simple hypotheses:

Let Hy,H; be two simple hypotheses, i.e.,

H0:9=90VSH1:9=017590

Let ¢(X) = §$3 be a test statistic defined as the ratio between the likelihoods
under the two hypotheses, L(6|X,H;) and L(0|X,H,) respectively.
For a fixed significance level «, the Neyman-Pearson lemma shows that:

The decision rule: "reject Hp when ¢(X) > k" is the UMP test, where k is chosen
such that Py, (¢(X) > k) = .

Limitations:

This result relies on the assumptions on the underlying data distribution:

What if L(#) is incorrect, or if we do not know it?

Even if we know L(f), deriving the distribution of the ratio is not always
possible:

Requires numerical approximations.
UMP tests do not always exist:
Neyman—-Pearson lemma only holds for simple hypotheses.

What about composite hypotheses? (i.e., one-sided or two-sided tests)

Let 6 be a scalar parameter and 6 be its estimate. Also, let & be the estimated
standard error of é.
Consider testing: Hy:0=46, versus H;:60+#0,.

~

When 6 is Normal:




Then we can define the Wald test as:

-6,

— Choose test statistic W =

— Choose critical value k based on asymptotic normal distribution

Pso(z>k)=§, when W > 0

s Py (IW|>k)=a-Py (|Z| >k)=a—
0, (IW[ > k) 6, (121 > k) peu(z<_k):g, when W < 0

* Hence, we set k as the quantiles of a standard normal distribution z,,, i.e. threshold for which Py, (z> za/z) = %

* Inother words: the critical point is the value for which the cdf of a standard normal returns 1 — g i.8. 2/ = @1 (1

— Equivalently: p —value = Py (IW] > |w|) = Pg, (1Z] > |w]) = 2&(—|w|)
where wis the value of W observed in the sample

* Decisionrule:
— Based onrejection region: Reject Hy if W > z5 , or W < —zy )y
— Based on p-value: Reject H if p — value < a

Example:

Let X be a random variable describing the average surface temperature of a star, such that f (X, 8) is its
probability distribution and 6 represents the true mean temperature.

Imagine we observe a sample X = {X, ..., X,;} of n = 30 experimental measurements of the surface temperature,
and we get that ¥ = 5008K and s = 64K2.

Now, our current theory postulates that & = 5000K. Can we claim that our experiment is a new discovery?

* Null hypothesis (H,): the hypothesis we want to test is Hy: 8 = 5000K
* Alternative hypothesis (H,): Hy: 6 # 5000K

+ Test Statistic: t(X) = W = 9_390

— We need to estimate § and ¢ = we can use X and w/{sz}, respectively
_ X0,
— By LLN we know that W = S "o N(0,1)
 Significance Level (a): @ = 50 ~ 2.9 x 1077

* p-value (p):

— How to compute this? Given the asymptotic distribution:

-8 5008 — 5000
p — value = Py (IW| > |w]) = P, (|z| > == ) =20 (- |5 | ~ 20(-547) ~ 45 x 10°
\/ﬁ ‘/ﬁ INIVERSITA DI BOLOGNA

* p-value (p): P(X € RR,|0 = 5000K) =~ 4.5 x 1078
* Decision Rule:

— If p-value < a > Reject H, > new discovery!

ALMA MATER STUDIORUM
INIVERSITA DI BOLOGNA

We are studying the decay rates of two radiocactive isotopes, A and B, over a fixed

time period t. Let X be the random variable describing these processes, such that:

X4~ Bern(ps), Xp~ Bern(pg), and X4 1l Xp.

Now imagine we observe two sufficiently large samples of decays for each isotope,

i.e., ny,ng>30, and we want to test whether the decay probabilities of the two

isotopes are significantly different.



For this problem, we can use a Wald test (Z-test) for comparison of two sample

proportions (frequencies).

Hypothesis: Hy:py =pp vs H,:p4 # pB

ng+ng—00

Test statistic: Z = Pa—Ps N(0,1)
ﬁA(lfﬁA)+ﬁB(1*I33)
ny np

— p-value and rejection region can be computed based on the standard normal

distribution.

Note:

When the sample size is small, we can use the exact Fisher test

We are studying the thermal conductivity of two materials. Let X be the random

variable describing these processes, such that X4 L Xpg.

Now imagine we observe two sufficiently large samples, and we want to test whether
the average insulation properties of the two materials are significantly

different.

For this problem, we can use a Wald test (Z-test) for comparison of two sample

means.

Hypothesis: Hp:pusa=pup vs Hi:pa # up

T ng+ng—00
Test statistic: Z= X“? XE; - N(0,1)
A 7B
R
If o0%,0% are unknown, we estimate them through their sample counterparts
5%, 8%,

— p-value and rejection region can be computed based on the standard normal

distribution.

Note:
When the sample size is small, if X~ N and homoscedastic (same variance), we can
use the t-Student test.

We are evaluating two different particle detector designs for a new high-energy
physics experiment. Let X be the random variable describing measured energy of
each detector for a known calibration source, such that:_XAthKuA,aiL

Xp~ N(up,0%), and X, L Xp.



Now imagine we observe two sufficiently large samples, and we want to determine if
there is a significant difference in detector precision when measuring particle

energies.

For this problem, we can use a Fisher-Snedecor test (F-test) for comparison of two

sample variances:

Hypothesis: Hj:0% = 0% (homoscedastic) vs Hj:o0% # 0%

> H
Test statistic: F’zz%% = F(nyg—1,ng—1)

where s%,s% are the sample variances, and F is the Fisher distribution

— p-value and rejection region can be computed based on the Fisher-Snedecor

distribution.

What if we want to compare more than two sample means? For example, compare K

samples and test whether they all belong to the same population.
If we assume the measurements in each sample are:

Independent
Normal

Homoscedastic, i.e., they have the same variance

Then we can use the Analysis Of Variance test (ANOVA-test) for comparison of K

sample means:

Hypothesis:
Hy:py=po=---=pg=p \ \ vs \ \ Hy:p; #p; for at least a couple 4,j; 1,

Test statistic:

H,
F= Y& T pg g0 K), where:

V(X)within
i k(XK= X)?
V(X)between = “T
foy Sk (X —Xi)?
V(X)Within = n—K

n::§:£;1nk

— p-value and rejection region can be computed based on the Fisher-Snedecor

distribution.

Suppose we are analyzing data from a particle physics experiment where we've

measured the invariant mass of a large number of particle decay events. We want to



determine if our observed mass distribution fits a theoretical model, which could

confirm or refute the presence of a new particle.

To do so, we can organize mass measurements into a histogram with H bins and
compare the entries in each bin to the theoretical distribution of a given model.
Let X, be the random variable describing the number of events in the i-th bin,
such that Xp L Xy for h#k.

If we have a sufficiently large sample in each bin (say > 5), then we can use a

Pearson Chi-squared test (X2—test):

Hypothesis: Hy:p,=m,Vh=1,...,H vs H;:p,# 7, for at least one hp_1 g

_ 2 H
Test statistic: X2::§:iﬂ-@%§?i———% X*(H—-M —1)
where nj, is the observed number of events in bin h, and nm, is the expected
one.

M is the number of fitted parameters.

— p-value and rejection region can be computed based on the Chi-squared

distribution.

Goodness of Fit

Goodness of fit refers to how well a statistical model fits a set of observations.

It describes the discrepancy between observed values and expected values under
the model in question.
Can be seen as a particular case of hypothesis testing:

More general alternative — Hji: all possible alternatives.

Note: Often we test for goodness of fit, but our hope is poor agreement:

A failed test means rejecting Hj: current knowledge — discovery!

Pearson’s X2 Statistic

Test statistic for comparing observed data ﬁ::(nh.“,nN) (n; independent) to

predicted mean values U= (vi,...,VN):

2 _ N (i —v)? 2
X = Z ————, whereo; = Vin,]
=1

0;

(Pearson’s x? statistic)

x? is the sum of squares of the deviations of the ith measurement from the ith

prediction, using o; as the “yardstick” for the comparison.

For n; ~ Poisson(v;), we have V[n;]=v;, so this becomes:

N 2
2 :Z (ni —vi)
i=1 Vi



If n; are Gaussian with mean v; and std. dev. o;, i.e., nin(I/i,a?), then Pearson’s

x? will follow the x2? pdf (here for x2=2):

CAR 1 N/2-1_—2/2
fe(zN) = —2N/21"(N/2) z e

If the n; are Poisson with v; > 1 (in practice OK for v; >5), then the Poisson
distribution becomes Gaussian, and therefore Pearson’s xz statistic here also
follows the X2 pdf.

The x? value obtained from the data then gives the p-value:
o0
p=/2 fre(zN)dz
X

The x?> per Degree of Freedom

Recall that for the chi-square pdf for N degrees of freedom:
Elz] = N,V[z] =2N.E[z] = N, V[z] =2N

This makes sense: if the hypothesized v; are right, the RMS deviation of n; from v;
is 0;, so each term in the sum contributes ~ 1.
One often sees X2/N reported as a measure of goodness-of-fit. But it is better to

give x? and N separately. Consider, e.g.:
x* =15 N =10 — p-value = 0.13,
x> =150, N = 100 — p-value = 9.0 x 10*

i.e., for N large, even a x? per dof only a bit greater than one can imply a

small p-value, i.e., poor goodness-of-fit.

Example:

N(x)

— data
8 | --- expected background g «— ThlS giVCS

N )2
XQ — Z (n; —v;) — 298

i=1 Vi

for N =20 dof.

Now need to find p-value, but... many bins have few (or no)
entries, so here we do not expect 2 to follow the chi-square pdf.
- Remember to check n; > 5

Likelihood Ratio Test (LRT)

The Look-Elsewhere Effect

Definition



The look-elsewhere effect, also known as multiple testing, refers to the
increased probability of a false positive result (Type I error) when multiple

independent tests are performed on the same dataset.

Intuition: Repeatedly looking for deviations from known distributions

increases the chance of observing false positives due to random fluctuations.
Example

Suppose a model for a mass distribution predicts a peak at mass m with

amplitude p. The observed data show a bump at mass mg.

Question: How consistent is this bump with the no-bump hypothesis (u=0)?
Hypothesis Testing

If mo is known a priori:
Compute a local p-value for the specific mass mg.
If mo is not fixed:

Compute a global p-value allowing mgy to move freely:
Qglobal R Qocal X N

where N is the number of independent tests.
Correction Methods

Monte Carlo simulations: Simulate the full testing process to account for

multiple testing.
Bonferroni corrections: Adjust a by dividing it by the number of tests.

Benjamini-Hochberg procedure: Control the false discovery rate (FDR).

The graph shows data with a bump around mg, which could either represent a true
signal or a fluctuation. Proper statistical methods are needed to determine

significance.

Total events consist of:
ny: Events from known processes (background).

ng: Events from a new process (signal).

If ns and np are Poisson random variables with means s and b, then n=ns+mny is
also Poisson with mean s-+b.



Probability Distribution:

b)" —(s+b)
Pln;s,b) = B0

n!
Example: Observing nghs =5
Background mean b=0.5. Should we claim evidence for a new discovery?
Hypothesis s =0 (no signal):
p-value = P(n > 5;b=0.5,5 = 0) = 1.7 x 10~* # P(s = 0)!
Significance from p-value

Significance Z: The number of standard deviations a Gaussian variable would

need to fluctuate in one direction to give the same p-value.

Relation Between p and Z:

p= / L g1 ®(2)
z 2w

Z=2"'(1-p)
®: Cumulative distribution function of the standard normal distribution.
The Significance of a Peak

Hypothesis Testing

Fach bin (observed) 1is a Poisson random variable.

Means are given by dashed lines (background).
Example:

In the two bins with a peak:
Observed entries: n=11.

Background mean: b= 3.2.

p-value for s=0:

P(n>11;b=3.2,5=0)=5.0x 10"*
Conclusion: The small p-value indicates the peak is unlikely under the background-
only hypothesis.

Questions to Consider:

Look-Elsewhere Effect (LEE):
How many x distributions have been analyzed?
For example, looking at 1000 histograms increases the probability of

finding a 1073 effect.

Adjust for the probability of finding a peak anywhere in the histogram.



Resolution Consistency:

Is the observed width consistent with the expected x resolution?

Take an x window several times the resolution for verification.

Analysis Cuts:

Were the cuts adjusted to enhance the peak? If so, freeze the cuts and

repeat the analysis with new data.

Decision to Publish:

Evaluate whether the observed effect is robust enough to justify
publication.

When to Publish: Why 5 Sigma-?

HEP Standard: A p-value of 2.9x1077, corresponding to a significance Z=5 (5-
sigma), 1is typically required to claim a discovery.

Reasons for a High Threshold:

Cost of False Discovery:

Announcing a false discovery has significant consequences.

Uncertainties in the Model:

Address systematic and statistical uncertainties.
Look-Elsewhere Effect:
Correct for multiple testing.

Extraordinary Claims:

“Extraordinary claims require extraordinary evidence.” - Carl Sagan

Key Reminder: The p-value is the first step, not the sole criterion for

publishing. Consider how compatible the data are with the new phenomenon.

The p-value quantifies the probability that the background-only model explains
the observed fluctuation.

Not intended to address:

Hidden systematics or high thresholds for a significant discovery.

Adjusted Threshold:

If LEE is well-managed, the threshold for discovery could reasonably be closer
to 30 than 50.

Scenario: Two experiments test the same hypothesis Hj:
Experiment 1 reports 30, Experiment 2 reports bo.

How to combine the p-values p; and py?

Challenges:

Wrong Approach: pemb = p1/p2.



Correct Approach: Use the Fisher method:

Pcomb = P(P1P2[1 - IH(PIPZ)])

This ensures the combined p-value reflects the joint significance.
Notes:

The Fisher method generalizes to multiple p-values but is not associative.

A combined test statistic tecomp should be computed when possible.



Interval estimation

Outline

How to measure uncertainty about estimates?
Interval estimation

Examples

How to measure uncertainty about parameter
estimates?

What We Have Covered So Far:

Methods for Point Estimation:
Maximum Likelihood Estimation (MLE) .
Method of Moments (MoM).
Point Estimators' Properties:
Bias
Consistency
Efficiency
Sufficiency

Sampling Distributions:

Fr i
om Point to Interyg; Estimatio,
n

(2

Point Estimate

Confidence Interya)

BUT: Is a single number (point estimate) enough?

-~
O%
- Example: measuring the Higgs boson mass

* Point estimate: my=125.35 GeV

* How confident are we about that specific value?
*  What other values are also plausible

* What values can we rule out instead?



How can we improve and complete the information of point estimates?

Point estimates are affected by various uncertainties:

Statistical fluctuations
Finite sample size
Measurement precision

Systematic effects

A range of values (interval estimates) 1is safer and more informative than a

single-point estimate.
Interval Estimation

Goal: Rigorously quantify uncertainty.
Builds on the estimator’s sampling distribution.
Key aspects:
§ is random; 6 is fixed.
Shape of the distribution depends on:
Sample size
True parameter value

Estimation method

A confidence interval M,H provides a range of plausible values for a parameter

with a given confidence level.
Key Idea

Balance between:
Width (precision): Narrow intervals give precise estimates.
Confidence (reliability): Higher confidence increases reliability but

widens the interval.

Simple Approach

Let 0~ g(f;6) be an estimator with PDF g(6;6).

~

g Refers to the probability density function (PDF) of the estimator 6 for a

~

parameter 6. This PDF describes the distribution of the estimator # under

repeated sampling, given the true value of the parameter 6.

Provide uncertainty as:

eobs + a-é



Oobs: Observed value of the estimator.
G;: Sample estimate of the standard deviation (standard error) of g(é;@).
Typically used for error bars in plots

Special Case: Gaussian g(6;6)
Confidence can be quantified precisely.

Note: This assumption does not always hold.

Formal Definition

Let wvg(f) and uo(f) be the lower and upper bounds of an interval for 6. The

confidence level is 1—a—f.
Intuition: Find endpoints [vg(#),us(f)] such that:

P(vﬁ(e)géguaw))zl—a—ﬂ

More Formally:

Define a and f:
a=P(0>u.0)) = f;:(g) g(6;60)do
B=P(6 < vs(0) = 2 9(6:6)d0
Solve these integrals for vg(f) and wuq(6):

~

By construction [vg(f),us(f)] has 1—a—f coverage for 0.

8 T T T T
& 1 F .
S
6
What about Ouye?
When the estimator is well-behaved, the endpoints vB(6) , ua(f) are monotonic

functions of 6

If Oops falls in vg(6), ua(6) then the interval (a,b) cover 6Oyue.



In practice

In practice, the recipe to find the interval (a,b) boils down to solving

- a= fuoz(a)g(é; 0)df = fgzbsg(é; a)dd

— =" 4(6;0)dd = [* g(8;b)dd

* aisthe hypothetical value of § suchthat P(6 > 0,,s ) =
* bisthe hypothetical value of 8 such that P(é < B,ps ) =p

Interpretation: if we were to repeat the experiment under same conditions many
times, an interval built in this way would contain the true parameter value, 6,
- a - f) - 100% of the times

(a)

g(8:a)

g(6:b)

(1



* Is often reported as: 0%, wherec =6 —aandd =b — 0
— Exercise: what does 80.25+331 mean?
* 80.25is our best estimate, i)
* Theintervalis [a =8 — ¢,b = 8 + d] = [80,80.56]

* If we repeat the experiment many times with same sample size and always construct the interval with this method, then the C.I.
will contain the 8, in 1 — a — [ fraction of the experiments

* Note:itdoesn’tmean P(80 < 6 < 80.56) =1—a — B!

* We often use central confidence intervals, i.e. take ¢ = [ = % - coverage 1l —y
— Note: «central» does not mean symmetric about 0, onlya=p

* Sometimes we may be interested only in one-sided confidence intervals, i.e.
— Seta as alower limit such that P(a > 8) = 1 — a (here a is random, henceforth the use of probability)
— Setb as aupper limit suchthat P(b < 8) = 1 — S (same as above)

Mean of Gaussian confidence interval

When the distribution of the estimator, é, is Gaussian, then the construction is much simpler. When the standard
deviation o is known, in fact:

. =1-G(0opsia,05) =1 — @ Bops—a two-sided one-sided
a= obs; 4, 03) = e

06 T — 0.6 T —

v(x)

(a)
-b o'y2)  o(1-y/2 ¢7'(1-0)
. f= G(gobs,b 0.9) ¢,< obs™ ) i (v ) (; v/2) | | !
%9 - .

Which inturnimplies that:

(b)

o a=0— 050 (1 -a)
* b =05+ (1 p)

* Notes:
— Inthis case, the interval [a, b] = [90,,5 a;,énbs + 0| is the 68.3% confidence interval

— This situation hold asymptotically for MLEs = just need to retrieve éMLE and g depending on data distribution

* E.g.if X ~ Binomial(n,p), thenp = X and g5 = 509 > Cl.=p+za op

n

— Also, valid asymptotically for any estimator resulting as a linear function of a sum of random variables due to CLT\ TER STUDIORU

SITA DI BC

Poisson confidence interval
Another commonly occurring case is where the outcome of a measurement is a Poisson random variable,
fWN,v) =

. — 0 0 . — 0 . — nops—1a"e”®
a =P =Vpps;a) =1 Gops;a) =1 - X200 ——

. Inthis case:

b"e
* B=P0 <TVpsb) = Cops;b,) = EnabsT
For one experiment only, we have that ¥ = n,, is the MLE. Replacing this result in the formulas we can:
* Solve numerically fora, b
* Exploit the Poisson/y? relationship:

- a= EF);Z (zx) - cdf of a y? distribution with 2n,,s degrees of freedom computed in a
- b=ip} (1 — B) > cdf of a x? distribution with 2(n,, + 1) degrees of freedom computed in 1 —

2 Xa(ngpst1)

* Notes:

— Important special case is when we want to set an upper limit and we observe n,,; = 0

bmte -b
5= Z =e™ b = —log($)




How to handle estimates near physical boundaries of parameter values?

This situation is common as experiments often look for new effects, which would imply a given parameter
different from zero, e.g. neutrino mass

Provide the new parameter’s estimate plus a C.I. if data estimate significantly different from zero
— Report upper limit otherwise (similarly for lower limits)
What if data estimates lie outside physics allowed regions? E.g. negative mass
— May happen when estimator is built as a difference due to measurement error, e.g. m2=E? - p?
Example: if§ = X —Y and X,Y ~ N, then § ~ N(ux — piy, 0f + 0¢) > Oup = Oops + 05@ 71 (1 — B)
— Thisin general corresponds to an interval: (—oo, eup] that surely contains negative values
— Also, the 8y, itself may end up being negative!

Statistics interpretation: this is one of the times the interval does not work, but coverage is ensured in the long run
Physicist: we already knew 6 > 0, cannot use negative upper limit as result of expensive experiments!
* Possible options

— Increase confidence level until the limit enters the allowed region = simply wrong!

— Shift negative estimates to 0: 8, = max(8ps,0) + 05®~1(1 — B) > often used, but does not maintain coverages
— Alternatively, Bayesian posterior

A More details: Statistical Data Analysis, chapter 9.8 ALMA MA
s ONIVERS)

A confidence interval can be seen as a hypothesis test:

g(0:a)

Test Hy: 6 = a versus Hy: 6 < a using 0 as test statistic
— Rejection regions is at § > 8, 05
— Resulting p-value is

C.L: confidence level «a is specified first, and a is a random variable 0

Test: null hupothesis Hy: 8 = a is specified first, and a = p — value
is a random variable

g(@:b)

Similarly, test Hy: @ = b versus Hy: 8 > b using § as test statistic
— Rejection regions is at § < 8, 05
— Resulting p-value is

Note: the confidence belt can be seen as the acceptance region of the 6
corresponding test



© T T —T T
A confidence interval can be seen as a hypothesis test: > el T-At 1 T+t
2 -
+ Likelihood/x? Method 10g Lo
— Useregions where log L decreases by N?/2 from maximum (or )(2
increases by N?)
— For large samples, approximate classical confidence intervals 45T ]
— Computationally simpler than exact method log L ,,—1/2
— Works even for non-Gaussian distributions
* Profile Likelihood & Likelihood Ratio
: " o -5 —— —
— Handle nuisance parameters by "profiling 05 1 15 2
— Ratio A(8) = L(8,V0)/L(8,V)
— -2log A follows X distribution (Wilks' theorem) Fig. 9.6 The log-likelihood function
. . . log L(7) as a function of 7 for a sam-
— Used for hypothesis testing and Cl construction ple of n = 5 measurements. The in-
. .y . . . terval [f — A7_,7 + A74] determined
Multidimensional Confidence Regions by log L(r) = log Lmax — 1/2 can be
. Feldman-Cousins Unified Approach used to approximate the 68.3% central
) . ) ) confidence interval.
— Combines hypothesis tests and confidence intervals
More details:
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the

— Uses likelihood ratio ordering principle
— Handles physical boundaries correctly
— Avoids "flip-flopping" between upper limits and intervals

image is Likelihood/x? Method.

Statistical Data Analysis, chapter 9
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Bayesian inference
Outline

Why we need another approach?
Overview of Bayesian approach

Examples

Why we need another approach?

Although frequentist approach is solid and widespread, it has several limitations:

p-value misinterpretation: p-value # P (H)
Same for confidence intervals: PO € C.I.) # 1 - «
Struggle to incorporate prior knowledge
Many theoretic results hold only asymptotically
Difficult to deal with small samples
Huge statistics needed for rare events
Model comparison is challenging

E.g. LRT does not hold for non-nested hypothesis

In general, Bayesian statistics is based on a completely inverted conception of
randomness:

Data is fixed, parameters are uncertain
Also, probability is a measure of belief
Not «long-run frequency of occurrence» as in frequentist settings
The whole mechanism is based on:
Prior knowledge
Bayes theorem as a tool to provide prior updates — prior knowledge is

inherently incorporated in our analysis

Inference is based on the result of the update process: posterior distribution

Given the previous formulation, the Bayesian approach entails several advantages

Direct probability statements about parameters

Natural incorporation of prior knowledge



Better handling of uncertainty and small samples
Intuitive framework for model comparison

Alignment with scientific process of updating belief

Bayes’ theorem provides a nice mechanism to update probability in light of new

evidence:

P(B|A)P(4)
P(B)

* Prior Probability, P(A): Initial belief before seeing evidence
* Marginal Likelihood, P(B): Overall probability of the evidence
» Likelihood, P(B|A): Probability of evidence given the hypothesis

* Posterior Probability, P(A|B): Updated probability after observing
evidence where

P(A|B) =

where:(P(B) = Z;P(B|E)P(E))|
Law of total probability

Key Insights:
- Bayes’ Theorem updates beliefs based on new evidence — resembles how we think
- It accounts for both the strength of the evidence and prior knowledge

- In inference, we look at these blocks as distributions!

A prior distribution represents our beliefs about the parameters before looking at
the data

Encodes what we know a priori about the possible values of the parameter

Prior choice is a critical step and it affects our results - Especially

crucial when we have limited data!
Types of prior distributions:
Informative
Weakly informative
Non-informative
Conjugate
Hierarchical priors for hyperparameters

Important to conduct sensitivity analysis and check robustness to prior choice

A prior distribution (ex: probability of disease) is conjugate to a likelihood
function if the resulting posterior distribution is in the same probability

distribution family as the prior.

With family we mean the same distribution but different parameters

(Poisson(2), Poisson(3))
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Let © be the parameter of interest

Prior: p(6)

Likelihood: p(z|6)

Posterior: p(flz) x p(z|0)p(h)

If p(f) and p(flz) are in the same distribution family, p(f) is conjugate to p(z|f)

Key properties:

Analytical tractability
Interpretability as prior data

Sequential updating
Here an example that explains better
Conjugate priors: Beta prior for Binomial data

Let X ~ Bin(n,p) describe the process we are studying. We are interested in the

parameter p

* Recallthat f(X = k|n,p) = (Z) pk( —p)nk

*  Whatis the conjugate prior for p?

* Ifwesetp ~ Beta(a,B), then f(P = pla,B) = B(;B)

— Tocheckif p ~ Beta(a, B) is conjugate for X ~ Bin we need to derive the posterior
— ByBayes THM:
M\ ea ek L a-1¢1 _ \B-1
F@lem) o I @) < (i) (=P * gozsp™ A=)
« pkpa—l(l _ p)n—k(l _ p)ﬁ—l *C pk+a—1(1 _ p)n—k+ p-1
— Hence: f(P =p|x) ~ Beta(k + a,n —k + B)

p*~1(1 — p)#f~1, where B(a, B) is the Beta function

— Note: in this case it is possible to show that the constant factors nicely combine into thus returning the

B(k+an—k+B)’
exact version of a Beta distribution; however, it is sufficient to derive posterior up to normalization constant

Interpretation:

The prior Beta(a, ) can be interpreted as a - 1 prior successes and f§ - 1
prior failures

The posterior Beta(a', B') incorporates k observed successes and n - k
observed failures

Update rule: posterior parameters are simply the prior parameters plus the

observed data
Common conjugate prior pairs

We have 6 families of likelihood/conjugate prior pairs:



Beta: p ~ Beta(a, ) Bernoulli/Binomial: X|p ~ Bin(n, p) p|X ~ Beta(a + ng, f + ng)
Gamma: 1 ~ ['(, B) Poisson: X|A ~ Poisson(1) AX ~ T(a + Nepents, B + Nobs)
uX ~ N, o)
Normal (mean): Normal, known variance: where:
HlT ~ N (1o, T%) X|u ~ N(y,02) , Mo B 4.
W="—"p- 0 =5tz
a?IX ~ 1G(a', B")
Inverse-Gamma: Normal, unknown variance: where:
0% ~IG(a, B) X|o? ~ N(u,0%)

d=at+y B =3I -

Gamma: 1 ~ I['(a, B) Exponential: X|1 ~ Exponential(4) AlX ~T(a +n,B +XXi)

Multinomial: X|0 ~ Multinomial(n, )

Dirichlet: 8 ~ Dirichlet(ay, ..., ag) 6|X ~ Dirichlet(a; + Xy, ..., ax + Xg)

Jeffrey’s prior

Jeffrey’s priors are a way of expressing «objective» or «non-informative» prior

knowledge, i.e. let the data speak for themselves.

This mean that the prior should have little or no prior information about the

parameter of interest.

* Proportional to Fisher information matrix: 7(6) } det(1(8)), where I(8) = E[(-0°/06%) log p(x|8)]

* Note: invariant under reparameterizations (e.g. 7 = 1/6)

— Thisis not guaranteed in general, e.g.: for 8 ~ Unif(0,1) thent = 8~ » Unif(0,1) (see water and wine paradox)
* Some common cases:

— Poissonian mean:

— Poissonian mean with background b: p(p) x1/vp

— Gaussian mean: p(p) x 1/\/p+b
— Gaussianr.m.s: p(p) o< 1
— Binomial parameter: plo) x1/c
pe) o 1/4/e(1 —¢)

* Jeffrey’s priors are often improper (do not integrate to one)
— Not a problem as long as the posterior does!

T

How do we summarize the posterior distribution? We have many options!

+ Posteriormean: E[0|x] = [ 0p(0|x)dd - integrate wrt 8!
— Minimizes squared error loss
— Often easy to compute analytically for conjugate priors

* Posterior Median: use 0,,,, such that P(6 < 0,,.4) = 0.5
— Minimizes absolute error loss
— Robust to outliers
— Invariant under monotonic transformations
— Often requires numerical computation

* Posterior Mode (MAP Estimate): 0,,,p = argmaxy{p(0|x}
— Maximizes the posterior density
— Often similar to MLE for large samples and flat priors
— Notinvariant under reparameterization

— Can be computed via optimization

Note: importantly, we now have the whole distribution so we can compute
whatever quantity of interest (e.g. 25th, 75th percentiles, variance,

skewness, ..)

Choosing a Point Estimate



There are several factors that influence how we choose Bayesian point estimates:

Depends on the use-case

Ease of computation

Interpretability

Robustness

Invariance properties
Comparison to Frequentist Estimates

MLE often similar to MAP with flat prior

Bayesian estimates incorporate prior information

Bayesian framework provides natural uncertainty quantification
Limitations:

Can be misleading for multimodal posteriors

A credible interval is a range of values that contains the true parameter value
with given posterior probability

Interpretation: “There is a a% probability that the true parameter value lies

within this interval, given the data and our prior beliefs”
Types of Credible Intervals

Central credible interval of size «

 An interval a, b where P(0 < a|data) = P(0 > b|data) =1 — /2

e Easy to compute and interpret

* May not be the shortest possible interval

Highest Posterior Density (HPD) Interval e
The shortest interval containing a% of the posterior probability
Always includes the posterior mode
May be disjoint for multimodal posteriors

Invariant under one-to-one transformations of parameters

Computed analytically (if we know f(6|x)) or numerically.

Limitations:
— Depend on prior specification

— Actual coverage may be greater/lower than nominal value

The Bayesian approach gives a direct way of measuring the probability of
hypothesis

This time we can compute hypotheses probability directly: P(Hyldata) and
P(H,|data)

Then the test is based on the Bayes factor:



B P(data|H1) B P(H1|data)P(H1)
~ P(data|HO)  P(HO|data)P(HO0)
BF > 1 means that data more strongly support H1

BF

BF < 1 means that data are more compatible with HO
Bayes factors quantify evidence in favor of a null hypothesis, rather

than only allowing HO to be rejected or not

However, closed analytical solutions are not always available - resort to sampling

* Metropolis-Hastings Algorithm

— Basic principle: Proposal and acceptance/rejection
- Key steps:

e Propose a new state

e Calculate acceptance probability

e Accept or reject the proposal

- Tuning the proposal distribution

* Gibbs Sampling

— Sampling each parameter conditionally on others
— Useful for hierarchical models

- Convergence properties

e Other methods:

— Importance sampling

— Variational inference

Bayesian

* Intuitive interpretation of results g
* Naturalincorporation of prior information Designod by Froopa B
* Handles small sample sizes better

* Straightforward approach to complex models

* No need for p-values or adjustments for multiple
comparisons

* Provides full posterior distribution *  Objectivity (no prior specification needed)
* Well-established procedures and software
* Often computationally simpler
* Long-run performance guarantees
* Widely accepted in many scientific fields

Frequentist
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* Prior specification can be subjective P8 Soluton o fo
» Canbe computationally intensive Designed by Freepi, image
* Can be sensitive to prior choice with small
samples Frequentist

* Interpretation of p-values and significance

* Nodirect probability statements about hypotheses
¢ Complexmodels and small sample sizes

* Multiple comparisons and p-hacking

Practical considerations

The choice may often depend on practical requirements and considerations:

e Field-specific conventions

* Nature of the problem, e.g.:

- Availability of prior information

— Possibility to run repeated experiments

e However, often both approaches reach similar results

- Large sample sizes

— Objective priors can lead to similar frequentist methods - Calibrated Bayes

approaches attempt to ensure good frequentist properties



Learning theory

Learning is about creating systems that can improve their performance on a task

through experience (i.e., data). More formally:

e Experience (E): Data used for learning
— Historical observations
— Experimental measurements

- Simulated data

e Task (T): What we want to accomplish
— Predicting house prices
— Classifying particle interactions

— Clustering galaxy types

» Performance (P): How we measure success
- Prediction accuracy
- Mean squared error

— Classification precision/recall

Goal:

Learning a mapping function , where:
e X: Input space (e.g., raw data, signals, measurements).

* Y: Output space (e.g., predictions, classifications, clusters).

Labels & Annotations:
Annotations (e.g., labels for target outputs ) guide the learning process but come

with challenges:

Require expertise.
Are time-intensive.

Demand a large volume for effectiveness.

Examples: Associating particle species with signals, associating invariant mass

with measured momenta.

We have several learning paradigms depending on the degree of supervision provided
to the model



supervision supervision

Supervised Learning Weakly-Supervised Learning Self-Supervised Learning Unsupervised Learning

* Every training example * Partial, noisy, or * Automatically generated * Works directly with raw
has expert-verified labels approximate labels supervision from data data

* Most straightforward but * More efficient but less + No manual labelling * Most flexible but least
most expensive reliable * Requires clever pretext accurate

* Best when high accuracy * Good for large-scale task design + Good for exploratory
critical (e.g., safety applications with * Useful for representation analysis and pattern
systems) tolerance for some error learning discovery

Learning tasks: what are we trying to learn?

We have different learning tasks depending on what kind of output the model should
produce

Predictive tasks Pattern discovery Generation tasks

Clustering

Goal: group similar

instances

* Example: galaxy
clustering

Dimensionality
reduction
* Goal: find compact
representation
* Example: reducing
\ signal dimension

Training procedure

The learning phase, training, is carried out differently depending on the learning
paradigm

Supervised

e The model learns from pairs of inputs/desired outputs;

- e.g. fruit image/fruits category

e Parameters adjusted to minimize “difference” between predicted and desired
outputs (loss function)

- E.g. Cross Entropy (CE)

e Learning is guided by expert annotation

e Performance clearly defined by the loss or other quantitative measures

- E.g. accuracy, precision, recall



f(X; eupdate) =

Prediction
Y =f(X;6)

4
Label g Loss

Y CE=L(?,Y)
gupdate .

Parameter
update

Unsupervised

* The model sees data only and searches patterns in data

- E.g. fruit image/groups of similar images

e Parameters adjusted to compute convenient representation

- E.g. latent space where similar images are close-by

e Learning is guided by data structure and representation, without feedback
e Not clear how to measure performance

- Typically requires interpretation of results

- Many interpretations may be possible!!

e which one is of interest?

f(X; eupdate) =

Representation

V=16

6
update A

Parameter
update
Loss Function Selection Unsupervised Learning
¢ Defines what the model considers as “error” e Domain knowledge incorporation
* Must align with physical objectives — Definition of similarity
— Classification: Cross-entropy for probabilities — Choice of data representation
— Regression: MSE for continuous values — Physical constraints
— Custom losses for physics constraints — Selection of relevant features
¢ Influenced by: ¢ Links to dimensionality reduction
— Nature of the data (discrete/continuous) — Balance between compression and information
— Noise characteristics and challenges
K — Domain-specific requirements Practical Tips

Start simple, add complexity as needed
Validate against physical intuition
Consider computational resources
Document assumptions and choices

— Experiment tracking and MLOps

Supervised Learning Challenges
e Overfitting: memorizing vs. learning W
— performs well on training data but fails to generalize

— Data splitting strategy
* Training: learn parameters

* Validation: tune hyperparameters

¢+ Test: final evaluation

¢ Mustbe independent samples! J




Least Squares

Linear regression via Least Squares

Least Squares (LS) are an estimation technique adopted to solve a linear regression task:

* Regressionis a learning task aiming at predicting continuous values
— Xisthe independent (control) variable (input, feature, observable)
— Yisthe dependent variable (output, target)
— Wewant to find a function f: X > Y such thatY = f(X; 0)

— If f(X; 0) is aliner function of the parameters 0, then we have linear
regression L 2

*  Problem setup
— Imagine we observe a sample of (X,Y) pairs: (x4, V1), (X2, ¥2), -, (X, V) R ‘
— Goal: find f(X; 6) that best approximates the relationship between XandY
— Linear model: f(X;0) = B, + f1X, where 8 = (B, B1)
— How do we determine the optimal value for the vector 6?

Least Squares method resolves this problem by minimizing the Mean Square Error (MSE)

* Define the error (loss) in terms of MSE between predicted and true values of Y:
MSE = Z(Yi - 9)?
i

«  WhyMSE?
— Heavier penalization to larger differences
— Positive and negative errors are treated equally

— Mathematically convenient (differentiable)
* Objective: minimize total observed MSE wrt 3, 51

2
— MSE = Loss(By, f1) = Zi(yl' —(Bo + .31xi))
— Taking partial derivatives

dLoss

—LS _ _ —LS
g = 2 Zilvi— o+ Bix))) > By~ = — 1%, where we replace f,=

dLoss __
apy

LS _ 3iq-0DWi—y) _ covixy)
2 Zi()/i — o+ ﬁlxi)) xi>p = lzli(x;‘—i)lz = VAR)(Cx})’

—LS LS . . - . .
* Bo ,B1 aresaidLS estimates of the coefficients for linear regression

Least Squares estimates have some nice properties:

* LS provides Best Linear Unbiased Estimator (BLUE) for 8 (Gauss-Markov theorem)
— Unbiased and least sampling variance
* Iferrors are normally distributed, then LS are equivalent to MLE
— Wecanwrite:Y=f(X;0)+¢€=,+ B X +¢, where € = Y — ¥ is the error (residuals)
— Ife ~N(0,02), thenalso Y|X ~ N(By + B X,0?)
— ltfollows that the log-likelihood can be written as:

1
£(Bo B, 0%) = —5log(2m) — 5108(6%) — 55 > (i = fo = AiX))?

— Note that {’([)’0,,81, az) o« MSE when we are interested justin S, 51
-> Least Squares are equivalent to Maximum Likelihood estimates for 3, 51



Neural Networks and Decision Trees

Neural Networks (NN) are a class of models that have proven effective at learning from data

* Powerful universal function approximators

hidden layers

input
output

* Inspired by biological neural systems layer @
layer

R
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* Very effective for:
— Pattern recognition
— High-dimensional data
— Non-linear relationships
*  Widely applied in physics as well:
— Particle identification
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The basic unit of a Neural Network is the “artificial neuron”, also called “perceptron”

Dendrite .
* Inspired by biological neurons Aoxon Terminal
— The cell body receives a signal and process it
— Ifthe signalis interesting, the cell body gets excited
— When the excitement exceed a given threshold, the axons
activate and transmit the signal to neighboring cells

Schwann cell

« Artificial neurons are a mathematical representation of the Myelin sheath

above behavior:
— The signal is represented by the input, x; bias
— The excitement level is formulated as a linear IZI
transformation of the signal: g(x;; b, w;)
— The result is passed through an activation function, 1, that
mimics the activation mechanism

« If the processed signal overcomes the activation threshold, it is
passed through the next neurons

Nucleus

' Y(gCxi; bowy)) .

activation =~ 4 next

weight funcnon;,/‘('/ﬁ neuron

0 t

Building upon artificial neurons, we can design custom network architectures formed by the following blocks:

. . hidden layers
— Collect all raw data inputs input

output
layer

layer @ @ @
A A AN
ER RN

¢ Hidden layers
— Possibly more than one
— The more we add, the deeper the architecture

Each i ted to all in adjacent | )@I“@%&'ﬁ@?&“@&{;
— Each neuron is connected to all neurons in adjacent layers, X »v»" ARARS "
i.e. Fully Connected Neural Network (FCNN) @"‘A’\'/""‘\./""‘\.’(‘ .
TRFIFTI AN

BB N

- KOS AR AR L)

*  Output layer
— Finalresult, network prediction
— The number of neurons depend on the task
¢ Classification: neurons = n. of classes
* Regression: typically one neuron




Forward pass

Learning phase N

hidden layers

input
layer output
layer
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The learning phase can be break down into 4 steps:

Loss (,9)

* Forward pass: ,‘Q.'Q.“, SEAESLAIXIL XY
— Inputis propagated to the network to get a prediction : V‘[‘i{‘""é@%"ﬁﬂtﬁ&"‘i\\
— Weights and biases are initialized “somehow” //W‘\\'/}‘\\V/’a
* Loss computation © @‘@A@

— The loss function is evaluated to measure prediction error

VLOSS <: ]
Backpropagation
* Backpropagation
— Compute gradients of loss wrt parameters
— Chain rule allows to retrieve these gradients for all layers
proceeding backwards: from output to previous layer an so
on...
¢ Parameter update
— Gradient descent optimization
— Learning rate, a, controls the update “size”
— Update rule: wye,, = woiq — aVLOSS

Gradient descent

Universal Approximation Theorem n‘ —

A feedforward network with a single hidden layer
containing a finite number of neurons can approximate
any continuous function on compact subsets of R",
under mild assumptions about the activation function

The Universal Approximation Theorem (UAT) stats that

K. Hornik, M. Stinchcombe, H. White, Multilayer
feedforward networks are universal approximators(1989)

Implications
* ANN with a single hidden layer (Single Layer Perceptron, SLP) can approximate any function, provided that:
— Sufficient number of hidden neurons
— Appropriate activation function (introduce non-linearity)
— Weights and biases are learned correctly

* However, this theorem just shows the existence!
— Do not specify how to find correct weights
— Number of hidden neurons might be impractically large (computationally unfeasible)

If a SLP can learn any function, then why bothering with deeper architectures?

Deep architectures have several advantages:
* Hierarchical Feature Learning
— Lower layers: basic features
— Middle layers: feature combinations
— Upper layers: abstract representation
* More efficient learning than shallow architectures
— Fewer total parameters needed for same expressivity
— Better generalization properties
— More efficient training and inference
* Empirical Success
— Consistently better performance in practice
— More robust feature learning
— Better transfer learning capabilities

Key Takeaway

While UAT shows that shallow networks are theoretically
sufficient, deep networks are practically superior due to:
* More efficient parameter usage

* Better representation learning

* Natural hierarchy matching real-world processes




Challenges:

e Overfitting is very common if architecture not tuned properly
* Mitigation strategies: Regularization, Dropout, Early stopping
e Vanishing/exploding gradients

e Activation functions squeeze neuron outputs between 0 and 1

If architecture is deep, we risk ending up with repeated multiplications of very
small numbers, which lead either to vanishing gradients (similar for exploding

case when activation is unbounded, e.g. relu)

Mitigation strategies: careful weight initialization, batch normalization,

residual connections

e Practical aspects to mind
* Batch size selection
* Learning rate initialization and scheduling

e Loss function

Decision trees are based on a 3 structural components and a splitting criterion:

* Rootnode: root node

— Top of the tree, it contains all of the data together A——

© class 2 label

— The sequential splitting starts here by selecting the © chsaes
most discriminative feature

* Internal nodes
— Decision points for the growth of the tree

— Contain subsets of data determined by conditions
imposed by previous splits

* Splitting criterion

* Leaf nodes — Criterion used to select
— Terminal nodes of the tree * Most discriminative feature
— Contain homogeneous subsets of data * The cutoff value for binary split
— Predictions are retrieved by applying a function to Classification
each leaf separately * Giniimpurity or Entropy
* Classification: majority class — Regression

* Regression: mean/median value * MSE, Mean Absolute Error (MAE)



Decision Trees are trained by a recursive algorithm. It starts from the root node and repeatedly splits data to
create more homogeneous sub-nodes. The procedure is repeated until a convergence criterion is met. The
final nodes are called leaves, and they should contain homogeneous subsets of data.

* Ateachiteration, all nodes and all features are scanned
* For a fixed feature and node: rootnode

— Attempt splitting node data by applying a binary cut to that feature,
e.g. split observations at Energy > 50 GeV

— Measure how good the split is, i.e. we quantify entropy/impurity or loss, L,
derived by the split

¢ The procedure is repeated for varying cutoffs, for all combinations of
features and existing nodes
* Atthe end of the iteration, all impurity/loss metrics are compared, and
the split corresponding to the best metric is applied
* Repeat iteration searching for new splits until a stopping criterion is met
— Maxdepth, minimum observations per leaf, minimum gain, ...

Imagine we are studying a particle identification problem, where we have:

rootnode

* Features (X): Energy, Track length and Shower width
— These are the observables of our sample

* Targetvariable (Y): Muon, Pion, Electron
— These represent the particle species we are studying

* The training of a Decision Tree consists of repeatedly splitting our data
into homogeneous subgroups
— easier to distinguish particle species

Building upon these foundations, researcher have developed several tweaks to improve the learning result:

*  Pruning
— Ifwe let the model grow indefinitely, then it will overfit root node
— Hence, we must tune appropriately the convergence criteria to prevent this
— Pruning is an alternative approach that avoid setting stringent convergence
conditions

* letthe tree grow and explore many branches

* atthe end, remove branches that do not improve validation performance
— Effective in combatting overfitting
— Improves generalization
— Reduces model variance

* Popular extensions: Ensembles

— Random forests: use multiple trees trained on random subsets of the
features; the final prediction is retrieved as voting/average of those trees

— Gradient Boosting: build strong predictor from sequence of weak learners;
each new model corrects errors of previous ensemble




