
Fundamentals of Probability

Introduction: what is probability?

Do we really need probability in physics?

Several areas where this is useful:

Definition

We have multiple definitions of what probability is:

Example: flipping a coin

Branch of mathematics that deals with the likelihood or chance of events

occurring

Framework for reasoning about uncertainty and randomness

Measure of how likely something is to happen, expressed as a number between 0

and 1

0 → impossible, never happen

1 → certain, definitely happen

e.g. how likely is that the sun will rise tomorrow? how likely I’ll get a 6

rolling a dice?

Handle measurement error/noise in experimental data

e.g. detector readouts in high-energy physics experiments

Statistical mechanics: model collective instead of individual behavior

e.g. Maxwell-Boltzmann distribution for particle speed in gas

Chaotic and complex systems

e.g. weather forecasts: range of possibilities varying initial conditions

rather than deterministic prediction

Quantum mechanics

e.g. inherent randomness of particles behavior, wave function, Heisenberg

uncertainty principle

nature microscopic behavior, not just tool for measuring uncertainty!

1. Axiomatic, Kolmogorov around 1933 – 3 axioms as general rules for computing

probabilities

2. Classical (Combinatorial), Laplace around 18th century

3. Frequentist (empirical), von Mises around 20th century

4. Subjective, De Finetti around 20th century – degree of confidence an

individual has in the occurrence of an event



1. Axiomatic definition

The axiomatic definition provides some rules to handle probability. From these we

can derive further properties:

Axiomatic definition – limitations

Although elegant and useful, it poses a few practical and philosophical issues:

EXERCISE: SHOW THAT

P(A ∪ B) = P(A) + P(B) − P(A ∩ B)

Does not define the probability of individual events

Requires a clearly defined sample space, not always the case; e.g. economics,

human behavior, …

Not applicable to non-measurable sets

Build upon objective probability, not always practical; e.g. personal belief:

P(«bus getting on time»)



2. Classical (combinatorial) definition

Classical definition turns out useful when:

--> e.g. we have a bag with 3 blue balls and 2 red ones. What is the probability

of drawing 2 blue balls at once?

Using axiomatic definition is impractical here, as we do not know the probability

of drawing a ball of a given color.

ELEMENTS OF COMBINATORICS

How to count and arrange n objects. Two key specs: order, repetitions

Permutations (order important)

Dispositions (order important)

We can enumerate possible outcomes

Outcomes are equiprobable

We can use the classic definition instead!

P(E) =
Number of favorable outcomes

Number of possible outcomes

w/o repetition:

n!

w/ repetition:

n!

k1!k2! … kr!

w/o repetition:

n!

(n − k)!



Combinations (order not important)

Back to classical definition.. and the question:

Using the axiomatic definition is impractical here, as we do not know the

probability of drawing a ball of a given color.

We can use the classic definition instead! Assuming each ball is equiprobable, we

just need:

Classic definition – limitations

Although intuitive, it poses a few practical and philosophical issues:

w/ repetition:

n
k

w/o repetition:

Cn,k =
n!

k!(n − k)!

w/ repetition:

C
′
n,k =

(n + k − 1)!

k!(n − 1)!

e.g. we have a bag with 3 blue balls and 2 red ones. What is the probability

of drawing 2 blue balls at once?

How many ways of extracting 2 balls out of 5?

How many of them contain 2 blue balls?

P("2 blue balls") =
C3,2

C5,2
=

(3
2)

(5
2)

=
3!

2!1!
⋅

5!

2!3!
=

3

10

Tautological, self-referential: what does it mean by "equiprobable"?

What if events are not equally likely? For example, ( P(\text{"gold medal at

Olympics final"}) )

Enumerating outcomes is not always feasible or even possible! (e.g. infinite

sets)



3. Frequentist definition

Frequentist definition assumes:

Frequentist definition limitations

• Experiments must be repeated under identical conditions, not always possible;

e.g. difficult to control external factors

• Requires large number of trial for accurate approximation

• Consequently bad-suited for rare phenomenon, especially one-off events

4. Subjective definition

This definition is based on a quantification of the degree of belief. For this, we

use a fair bet:

«P(A) = fraction of payout, Y, one would bet on A in order not to neither win nor

lose money»

Does not apply to empirical data (e.g. ( P(\text{"taller than 1.80m"}) )

Objective probabilities exist

We can collect data about a phenomenon and count how many times an event of

interest is observed

As the number of trials (data) grows, the relative frequency approaches the

true probability of the event

Experiments can be repeated under identical conditions

e.g. What is the probability of an atom decaying in the next year?

Take many atoms and put them under same initial conditions

Observe them for a year

Count how many of them have decayed

As the number of atoms grows, we have:

lim
n→∞

P(decay in 1 year)

P(E) = lim
n→∞

Number of times event E occurs

Number of trials

Based on personal belief and knowledge

Useful for unique, non-repeatable events; e.g. political election, betting, …

Only option in many practical situations

e.g. What is the probability that tomorrow will rain?

- Weather forecasts report good weather

- Today is sunny and warm

- I have outdoor activities planned for tomorrow



Subjective definition limitations

• Still hard to quantify, opinions change

• Naturally variable, personal

Conditional probability & independence

Two fundamental concepts when operating on probabilities are conditional

probability and independence:

-- Pessimistic: It would be fair to bet 10€ to win 100€ as, for me, rain is 9

times more likely: P(A) = 10/100

-- Optimistic: It would be fair to bet 99€ to win 100€ as, for me, sun is 99

times more likely: P(A) = 99/100

Conditional probability is the probability of an event occurring based on a

given prior knowledge. I.E. P(A|B)$ is the probability of A happening given

that we know B has already happened.

Example: Rolling a number lower than 3 given that the outcome is even:

P(n < 3|n even) =
P(n < 3 ∩ n even)

P(n even)
=

1
6
3
6

=
1

3

Independence: Two events are independent if knowing something about one tells
us nothing about the other.

Mathematically:

A, B independent  ⟹ P(A ∩ B) = P(A)P(B)

Note that if A, B are independent, P(A|B) = P(A)

Important: independent disjoint P(A ∩ B) = ∅



Frequentist VS Subjective probability and Bayes’
Theorem

Outline

How to update probability based on new evidence?

Bayes’ theorem

Bayes’ theorem provides a nice mechanism to update probability in light of new

evidence:

Key Insights:

Law of total probability

Express the probability of an event B in terms of a disjoint partition of the

sample space S:

Bayes’ Theorem

Frequentist VS Bayesian statistics

Examples

Bayes’ Theorem updates beliefs based on new evidence

→ resembles how we think

It accounts for both the strength of the evidence and prior knowledge

Note: prior belief/knowledge is not necessarily subjective probability

Partition the sample space S into disjoint subsets Ei so that: ∪Ei = S

Then a subset B of S can be expressed as:

B = B ∩ S = B ∩ (⋃Ei) = ⋃ (B ∩ Ei)



Here we used the definition of conditional probability: is a measure of

the probability of an event occurring, given that another event (by assumption,

presumption, assertion or evidence) is already known to have occurred

Thus, Bayes’ theorem becomes:

This is a graphical rapresentation

Leveraging conditional probability, we can re-write:

E is the evidence

H is the hypothesis



Bayes’ theorem: example

Suppose you want to know the probability of having a disease (A) given that you

tested positive (B) for it:

In practice:

We can compute the posterior probability using Bayes' Theorem:

P(disease|positive) =
P(positive|disease)P(disease)

P(positive)

Where P(positive) is the marginal likelihood:

P(positive) = P(positive|disease)P(disease) + P(positive|¬disease)P(¬disease)

= 0.9 ⋅ 0.01 + 0.05 ⋅ 0.99 = 0.0585

Therefore:

P(disease|positive) =
0.9 ⋅ 0.01

0.0585
= 0.1538 ≈ 15%

Exercise

Prior Probability (P(A) = P(disease)): reflects our belief in the hypothesis

before seeing any evidence, e.g., probability of the disease in the

population, independent of the test

Likelihood (P(B|A) = P(positive test|disease)): how probable the evidence is, assuming

the hypothesis is true, i.e., the probability of testing positive, given that

you actually have the disease

Marginal Likelihood (P(B) = P(positive test)): probability of the evidence, i.e.,

overall probability of testing positive, including both correct and incorrect

outcomes

→ law of total probability:

P(B) = P(B|A) ⋅ P(A) + P(B|¬A) ⋅ P(¬A)

Posterior Probability (P(A|B) = P(disease|positive test)): updated probability after

observing the evidence, i.e., probability of having the disease given the test

result

Suppose 1% of the population has the disease → P(disease) = 0.01

Suppose the test has:

90% sensitivity, i.e., it correctly identifies 90% of diseased testers →

P(positive test|disease) = 0.90

5% false positive rate, i.e., 5% of healthy people test positive →

P(positive test|¬disease) = 0.05



What probability interpretation should we use?

We have seen several definitions. Which one should we use?

What is statistics?

Statistics is the science of collecting, analyzing, interpreting, presenting, and

organizing data.

Key areas:

Axiomatic definition

Rules to handle probability mathematically

Always applies but not practical as we do not have P(Ei)

Classical

Useful when we can enumerate favorable and total outcomes

Outcomes are equiprobable

Not practical (or even unfeasible) with large/infinite sample spaces

Frequentist

Useful when we can perform repeated experiments under the same conditions

Note: the more trials, the better the approximation!

Subjective

Allows dealing with one-off or rare events

Based on personal belief and knowledge, therefore questionable

→ Bayes’ theorem makes it more rigorous and mathematically grounded

Provides tools and methodologies to make sense of raw data and draw

conclusions

→ turns data into meaningful information

Descriptive Statistics: summary and description of main features in data,
e.g., mean, median, variance, standard deviation, coefficient of variation



Statistics helps us answer questions like:

Frequentist statistics

Frequentist statistics is a framework that:

Bayesian statistics

Bayesian statistics is a framework that:

Inferential Statistics: goes beyond the data to make predictions or inferences

about a larger population

→ hypothesis testing, confidence intervals, and predictions based on observed

data

Prediction: W hat will happen given my model and the given data?

Inference: What can I learn from the data about my model?

Is a new drug effective in treating a disease?

What is the average strength of a material under stress?

Is the observed signal a new particle, or due to random background

fluctuations?

Builds upon the frequentist definition of probability: long-run frequencies of

events

→ repeatable experiments

The concept of probability is strictly tied to data:

We cannot answer: "P(Higgs boson exists)?"

P(Higgs boson exists) is either 0 or 1, we do not know which

We cannot answer: "P(\text{Higgs boson exists} | \text{data})?" either

What we can do: "P(\text{data} | \text{Higgs boson exists})?"

Accepted theories/models are those most compatible with experimental data.

Builds upon the subjective definition of probability: degree of belief about a

hypothesis



Frequentist VS Bayesian statistics

In summary, two alternative interpretations:

Exploits Bayes' theorem to update our knowledge based on data:

→ Actually measuring P(Higgs boson exists|data)!

However, the prior choice is subjective.

Frequentist framework works on the likelihood of data given hypotheses:

P(data|H)

Bayesian approach works on prior update given data: P(H|data)

Frequentists take decisions based on the likelihood.

Bayesians take decisions based on the posterior.



Random variables

Outline

Random variables

A random variable is a mathematical object that maps a numerical value to each

outcome of a random process:

Notation

Two types of R.V.s depending on the sample space:

Random variables

Examples of univariate distributions

Moments and characteristic function

A R.V. X is composed of a probability triplet:

Sample space, S: set of all possible outcomes

Event space, E: set of all events, i.e., all subsets of S

Measurable function, P: maps each event to its probability

Example:

R.V. X represents the random process of rolling dice

Sample space: S = {1, 2, 3, 4, 5, 6}

Event space: E = {{1}, {2}, . . . , {1, 2}, {1, 3}, . . . }

Probability function, P : F → R that associates to each event its

probability → distribution



Cumulative distribution properties

The cumulative distribution has several important properties:

lim
x→−∞

F(x) = 0, lim
x→∞

F(x) = 1

For continuous R.V.s, given constants a, b such that a < b:

F(b) − F(a) = P(a < X ≤ b) = ∫
b

a

f(x)dx

Note: in practice, we can use < and ≤ indistinguishably, as adding a point to the

integral does not affect the result.

A similar result holds for discrete R.V.s, but more attention needs to be paid to

inequalities.

Examples of DISCRETE random variable distributions

Non-decreasing

Right-continuous

Step function for discrete R.V.s

May be a step function also in the continuous case



.

Examples of CONTINUOUS random variable distributions

How to summarize a distribution?

Summary statistics: Central tendency and spread

Two useful properties often used are:

Distributions enclose all information about a random variable.

However, sometimes we do not need all that information.

Can we retrieve some synthetic measure of relevant features?

Central tendency

Spread

Symmetry

Behavior in the tails

Also useful for quantitative comparisons

Expected value, μ:

Discrete:

E[X] = ∑x ⋅ p(x)

Continuous:

E[x] = ∫
∞

−∞
xf(x)dx

E is a linear operator called expectation.
→ weighted sum (or integral), with probability (or probability density) as

weight

→ measures central tendency of the distribution



Expectation operator properties

The expectation is a linear operator, which implies several properties:

with the red highlight being constant, so replaceable with μ.

Moments of a distribution:

In general, we can look at moments as summary statistics. For a continuous R.V. X

, the moment of order m about c is defined as:

μm = E[(X − c)m] ≡ ∫
∞

−∞

(x − c)mf(x)dx

where c is a constant value.

Variance, σ2:

Discrete:

V [X] = ∑(x − μ)2 ⋅ p(x)

Continuous:

V [X] = ∫
∞

−∞
(x − μ)2f(x)dx

Variance measures spread around the expectation.

E[aX] = aE[X] where a is a constant value.

E[X + Y ] = E[X] + E[Y ]

This is true irrespectively of whether X,Y  are independent.

If X ⊥ Y , then E[XY ] = E[X]E[Y ]

However, E[XY ] = E[X]E[Y ] ⇏ X ⊥ Y

V [X] = E[X2] − (E[X])2

For a discrete R.V. X, just replace the integral with a sum and the pdf with a

pmf.

.

.

.

.

.

Mobile User



IMPORTANT MOMENTS

Exercise

Consider a continuous random variable X and two constants, α,β. Starting from the

definition of expected value, show that:

Characteristic functions

The characteristic function ϕX(k) of an r.v. X is defined as the expectation value

of eikX (similar to the Fourier transform of X):

ϕX(k) = E[eikX] = ∫
∞

−∞
eikxf(x)dx

Raw (initial) moments → c = 0:

μm = E[Xm]

The order 1 (m = 1) moment is the expected value:

μ = E[X]

→ central tendency of a distribution

Central moments → c = μ:

μm = E[(X − μ)m]

The order 2 (m = 2) moment is the variance:

σ2 = V [X]

→ spread around μ

Standardized moments → c = μ:

μm =
E[(X − μ)m]

σm

The order 3 (m = 3) moment is the skewness → measures lopsidedness.

The order 4 (m = 4) moment is the kurtosis → measures tail heaviness.

E[αX + β] = αE[X] + β

V [αX + β] = α2V [X]

Useful for finding moments and deriving properties of sums of R.V.s.

For well-behaved cases (true in practice), the characteristic function is

equivalent to the pdf and vice versa, i.e., given one, you can, in principle,

find the other.



Moments from the characteristic function

Given a random variable Z, we can derive the moments from its characteristic

function. To find the m-th moment:

→ From the characteristic function, we can derive moments even without an explicit

formula for the pdf.

Exercise

X and Y  are two independent random variables, and Z = X + Y  is derived as

their sum. Prove that the characteristic function ϕZ(k) is the product

ϕZ(k) = ϕX(k)ϕY (k).

Does this hold for a general linear combination of independent random

variables?

i.e., if Z = ∑ ajXj, then ϕZ(k) = ∏ϕXj
(ajk).



Popular discrete and continuous distributions

Outline

How do we use R.V.s for modelling real processes?

1. Uniform distribution: discrete

Example: detecting alpha particles emitted from a radioactive sample, assuming

isotropic emissions

Mathematical formulation:

• pmf, p(X = x) = 1
8  for all x ∈ S

• cdf, F(X ≤ x)?

– limx→−∞ F(x) = 0

– limx→∞ F(x) = 1

– F(x) = x
8 , x ∈ S

Expected value:

E(X) = 1 ⋅
1

8
+ 2 ⋅

1

8
+ ⋯ + 8 ⋅

1

8
= 4.5

Variance:

How can we use R.V.s in practice?

Examples of R.V.s: Uniform, Bernoulli, Binomial, Poisson, Exponential,

Gaussian, Student’s t, chi square

More examples of R.V.s: Beta, Gamma, Breit-Wigner (Cauchy), Landau

We divide the space into 8 equal regions, each covered by a detector

→ in which region will we observe the next emitted particle?

Cannot tell in advance: random process!

Each region has the same probability since isotropic

X is R.V. describing the region where the alpha particle is emitted

Sample space, S: {1, 2, 3, 4, 5, 6, 7, 8}

→ countable, so X is a discrete R.V.



V (X) = ∑(x − E(X))2 ⋅ p(x) = 5.25

In general, the discrete Uniform distribution describes random processes with a

finite number of outcomes, all equiprobable (e.g., fair die roll, randomly pick
one out of n elements)

So X ∼ Uniform(a, b) and the sample space, S: [a, b] = {a, a + 1, a + 2, … , a + n − 1}

→ n elements from a to b, spaced by 1 unit

Then

• Expected value: E(X) = a+b
2

• Variance: V (X) =
(b−a+1)2−1

12

• Characteristic function: φ(k) =
eika(1−eik(b−a+1))

(b−a+1)(1−eik)

1. Uniform distribution: continuous

Now imagine we have a single detector covering all the space around the sample

We have that X ∼ Uniform(a, b) and the sample space, S: [a, b]

→ this time is the continuous interval! e.g. [0, 2π]

• Expected value: E(X) = a+b
2

• Variance: V (X) =
(b−a)2

12

Is there easier way? Yes:

V [X] = E[X2] − (E(X))2

pmf, p(X = x) = 1
n
 for all x ∈ S

cdf, F(X ≤ x):

– 0, x < a

– x−a+1
b−a+1  for a ≤ x ≤ b

– 1, x > b

pdf, f(X = x) = 1
b−a

 for a ≤ x ≤ b; 0 otherwise

cdf, F(X ≤ x):

– 0, x < a

– x−a
b−a

 for a ≤ x ≤ b

– 1, x > b



• Characteristic function: φ(k) =
eika(1−eik(b−a))
(b−a)(1−eik)

2. Bernoulli distribution

Example: a single coin flip

Mathematical formulation:
X is R.V. describing the outcome of a coin flip, X ∼ Bern(p) with Sample space, S:

{0, 1}

When to use: Use the Bernoulli distribution for experiments with only two possible

outcomes (e.g., success/failure) where each trial is independent and has a fixed

probability of success.

2.1 Binomial distribution

Example: n coin flips

Mathematical formulation:

X is R.V. describing the number of successes in n independent coin flips,

X ∼ Bin(n, p) with Sample space, S: {0, 1, … ,n}

→ countable, so X is a discrete R.V.

Only two possible outcomes: heads or tails

→ denoted by 1, "success", and 0, "failure", respectively

We denote by p the probability of success, e.g., p = 0.3.

pmf, p(X = x):

p for x = 1

(1 − p) = q for x = 0

cdf, F(X ≤ x):

0, x < 0

1 − p for 0 ≤ x ≤ 1

1, x > 1

Expected value: E(X) = p ⋅ 1 + (1 − p) ⋅ 0 = p

Variance: V (X) = p − p2 = p(1 − p)

Characteristic function: φ(k) = 1 − p + peik

n independent trials with binary outcomes: heads or tails

Each flip has the same probability of success, p

pmf p(X = k)?

Note: X = ∑Yi, where Yi ∼ Bern(p)

Recall that, if A ⊥ B then: P(A ∩ B) = P(A)P(B)



So we end up with

p(X = k) = (
n

k
)pk(1 − p)n−k

which makes sense because

When to use: Use the Binomial distribution for a series of independent trials with
two outcomes each (e.g., success/failure), where the probability of success is

constant across trials, and you want to model the number of successes out of a

fixed number of trials n.

3. Poisson distribution

Example: Studying the decay of a radioactive isotope with a known average decay

rate.

Recall that, if A, B disjoint: P(A ∪ B) = P(A) + P(B)

Can we derive P(X = 0)? And P(X = 1)? And P(X = 2)? And P(X = k)

1. The number of ways to arrange k successes in n trials is the binomial

coefficient

2. The probability in n trials has to be multiplied for each k success and (n − k)

not success

cdf, regularized incomplete beta function

Expexted value: E[X] = np

Variance: V [X] = np(1 − p)

Characteristic Function: ϕX(k) = [1 + p(eik − 1)]n

We have a sample of radioactive material.

Question: How many decays will occur in the next minute?

The process is random, so we cannot tell in advance.

However, we know the average decay rate, denoted by λ (e.g., 5 decays per

minute).



Mathematical formulation:

When to use: The Poisson distribution is suitable for modeling random counting

processes where rare events occur at a known average rate (e.g., phone calls in an

hour or accidents per day).

Relationship between Poisson and Binomial distributions

Counting resembles repeated observations of whether an event has occurred

(success) or not (failure).

To understand their relationship, consider:

X is an R.V. representing the number of decays in the next minute,

X ∼ Poisson(λ).

Sample space, S = {0, 1, 2, 3, …}

This is infinitely countable, so X is a discrete R.V.

pmf: $$

p(X = k) = \frac{\lambda^k e^{-\lambda}}{k!} \quad \text{for } k \in S

![[Pastedimage20241228160810.png|400]]

Moments:

Expected value: E(X) = λ.

Variance: V (X) = λ

cdf: Calculated using the regularized gamma function.

Characteristic function:

φ(t) = e
λ(eit−1)

If X ∼ Poisson(λ), then:

λ is the average count in the time interval, also called the intensity.

Example: Expressing λ as:

λ = r ⋅ t

where r is the event rate, and t is the duration of the time interval.

Here, λ remains constant over time.

Sample space, S = N = {0, 1, 2, …}

Poisson: models counting processes for rare events.

Binomial: counts the number of successes in a series of independent trials.

The Binomial distribution counts the number of successes in independent

repeated trials:

p: probability of success in a single trial.

n: number of trials.



Hint: Try comparing the characteristic functions:

In general the Binomial converges to the Poisson for n → ∞ and p → 0

4. Exponential Distribution

In general, the Exponential distribution describes the waiting time between two

events (e.g., decay time, arrival time of next customer in a queue, time to next

call at call center).

1. Binomial characteristic function:

φBin(k) = [1 + p(eik − 1)]
n

2. Poisson characteristic function:

φPoisson(k) = e
λ(eik−1)

By letting p = λ
n  and considering the limit as n → ∞, the Binomial distribution

approaches the Poisson distribution.

Example: Studying the decay of a radioactive isotope, known average rate.

What is the waiting time between successive decays?

We know: 5 decays per minute, on average (λ).

Mathematical formulation:

X is R.V. for the waiting time between successive decays, X ∼ Exp(λ).

Sample space, S: [0, ∞).

⇒ uncountable, so X continuous R.V.

pdf, p(X = x) = λe−λx, x ≥ 0

cdf, F(X ≤ x) = 1 − e−λx, x ≥ 0

Characteristic function: ϕ(t) = λ
λ−it

.

Expected value: E(X) = 1
λ

Variance: V (X) = 1
λ2

Characteristic function: ϕ(t) = λ
λ−it



Property of exponential distribution: Lack of Memory

In general, lack of memory indicates that "the waiting time for the occurrence of

an event does not depend on how long has passed up to now".

Poisson and Exponential Relationship

Poisson and Exponential distributions model different aspects of the same process.

F(t) = P(T ≤ t)

⇒ past does not influence the future.

More formally:

P(T > t + Δt|T > t) = P(T > Δt)

In practice, this means that "the probability that the event takes longer than

t + Δt given that we already waited t is the same as the probability that it

takes longer than Δt starting from 0".

⇒ i.e., the fact that we already waited t, does not change the probability

of waiting another Δt time.

The exponential distribution has this property ⇒ Exponential is memoryless.

Example: Imagine our survival time is exponentially distributed. Then:

P(T > 90 + 5|T > 90) = P(T > 5)

⇒ Probability that a 90-year-old person survives 5 years is the same as a

newborn!

On one side: counting event occurred in Δt → Poisson.

On the other: waiting time between events → Exponential.

So, are these R.V.s related?

Let T be the waiting time between two successive events.

Let N be the number of events occurring starting from T = t.

What R.V. describes the waiting time T?

We can work on the cdf:



P(A) = P(N = 0) =
(λΔt)0

0!
e−λΔt = e−λΔt = 1 − F(Δt)

- ⇒ F(Δt) = 1 − e−λΔt ⇒ Exponential cdf!

Interpretation:

5. Normal Distribution

Example: Optical aberrations and lens defects.

Now, let us focus on the event A =′′no event up to T = Δt′′.

P(A) = P(T > Δt) = 1 − F(Δt).

This also means that N = 0, so P(A) = P(N = 0).

But N is a counting process, with intensity λ = rΔt, so N ∼ Poisson(λ).

Hence:

The Poisson distribution counts how many events occur in a fixed time.

The Exponential distribution measures how long you wait between events.

The rate λ connects the two:

In the Poisson distribution, λ is the average number of events per unit

time.

In the Exponential distribution, λ is the rate of occurrence (or

intensity) of events.

We focus a beam of light through a lens that, due to imperfections, produces

random deviations from the ideal focal point μ

Deviations are symmetrical, i.e., they are equally likely to be to the left or

right of the ideal focal point.

Small deviations are common, while large deviations are rare.

Question: What is the actual focal point’s position?

Mathematical Formulation:

Let X be the random variable for the position of the actual focal point.

Sample Space: S = (−∞, ∞) , meaning X is continuous.

Probability Density Function (pdf):

The distribution is bell-shaped and centered around ( \mu ), with the

following pdf:

f(X = x) =
1

√2πσ2
e

−
(x−μ)2

2σ2

where μ is the mean, and σ is the standard deviation.



General Properties of the Normal Distribution

Law of Large Numbers

The Law of Large Numbers states that the average of independent and identically
distributed (i.i.d.) random variables converges to their expected value as the

sample size increases.

Cumulative Distribution Function (cdf):

Starts at 0, gradually increases, accelerates at a point, then slowly

approaches 1 as x → ∞.

No closed-form solution, requires numerical computation.

Expected Value:

E(X) = μ

Variance:

V (X) = σ2

Characteristic Function:

ϕ(t) = eiμt−
1
2 σ

2t2

Standard Normal Distribution: Any normal distribution X ∼ N(μ,σ2) can be

transformed to the standard normal distribution Z ∼ N(0, 1) by:

Z =
X − μ

σ

This distribution has mean 0 and variance 1, useful for standard

computations.

Probability Intervals:

68% of data falls within ±1σ,

95% within ±2σ,

99.7% within ±3σ,

99.99994266% within ±5σ , setting a high threshold for new discoveries.



The law of large numbers iv very powerful

My estimation of pi

the thing is that, the more points I generate, the more precise I'll get, this

means that the error on the prediction will decrease:

To estimate the π i counted the number inside the circle. This corresponds to do

the average of a quantity that is 0 if the point is inside the circle and 0

otherwise, that is randomly distributed.

This means that the limit on the average of this quantity is

Why the expected value of I is π/4 ?

Let ( X1,X2, … ,Xn ) be i.i.d. random variables:

E(Xj) = μ and V (Xj) = σ2 for ( j = 1, … ,n ).

Define X̄n = 1
n
∑n

j=1 Xj

The x is generate randomly in uniform distribution

The y is generate randomly in uniform distribution

This is because



Central Limit Theorem (CLT)

The Central Limit Theorem (CLT) asserts that the sum or average of a large number

of i.i.d. random variables follows a normal distribution, regardless of the

original distribution.

Intuition

Formal Statement

6. Chi-Squared Distribution 

That's it.

A process influenced by many independent factors can be seen as the sum of

those factors.

With many factors, the distribution of the sum or average approaches a normal

distribution.

Let X1,X2, … ,Xn be i.i.d. random variables with E(Xj) = μ and V (Xj) = σ2.

Define X̄n = 1
n
∑n

j=1 Xj.

The standardized form Z = X̄n−μ

σ/√n
 approaches N(0, 1) as n → ∞.



t-Student Distribution

Definition: Chi-squared distribution describes a positive definite random

variable, obtained as the sum of squared independent standard Gaussian.

Applications: Used in hypothesis testing and confidence intervals for
variance.

Properties:

X ∼ χ2(ν), where ν is the degrees of freedom, representing the number of

squared components.

Sample Space: S = [0, ∞)

Probability Density Function (pdf):

f(X = x) =
1

2ν/2Γ(ν/2)
x(ν/2)−1e−x/2

Expected Value:E(X) = ν

Variance:V (X) = 2ν

Definition: Similar to the Gaussian distribution but with heavier tails,
suitable for smaller sample sizes.

Applications: Used in hypothesis testing and confidence intervals for

mean.

Properties:

X ∼ t(ν) , where ν is the degrees of freedom.

As ν → ∞ , t approximates N(0, 1)

Sample Space: S = (−∞, ∞)

Probability Density Function (pdf):

f(X = x) =
Γ ( ν+1

2 )

√νπΓ ( ν
2 )

(1 +
x2

ν
)

− ν+1
2

Expected Value: E(X) = 0 for ν > 1 ; otherwise undefined.

Variance: V (X) = ν
ν−2  for ν > 2 ; infinite for 1 < ν ≤ 2



How do multiple factors and their combinations
influence a process?

Outline of Topics

Introduction to Multivariate Random Variables

When dealing with systems influenced by more than one random factor, we use

multivariate random variables. Instead of analyzing each variable in isolation,

multivariate analysis examines their combined behavior.

Example: Weather Forecasting Model

Consider a model predicting weather in a coastal city. In this case, two

observable random variables could define the daily conditions:

Our question: What is the probability of observing a particular combination of
temperature and humidity?

Since both ( X ) and ( Y ) influence weather conditions, we cannot consider them

independently. Instead, we use a Joint Probability Distribution to describe the

likelihood of specific combinations of temperature and humidity.

JOINT PROBABILITY DISTRIBUTION

For two random variables ( X ) and ( Y ), the joint probability distribution (
f(X, Y) ) quantifies the probability of simultaneously observing particular values

of both ( X ) and ( Y ). For instance, if ( f(25, 80) ) represents the probability

of a 25°C day with 80% humidity, then we can formally express this as:

P(A ∩ B) = ∬ f(x, y) dx dy

1. Modeling processes with multiple influencing random factors: How multiple
random variables can be used to describe complex systems.

2. Multivariate Random Variables: Joint, marginal, and conditional probability

distributions.

3. Transformations of Random Variables: Techniques for deriving distributions of

functions of random variables.

( X ): Daily maximum temperature in degrees Celsius (°C).

( Y ): Relative humidity percentage (%).



MARGINAL DISTRIBUTION

The marginal distribution focuses on the probability of observing values of one
variable while ignoring the influence of the other. For example, to find the

probability of a specific temperature regardless of humidity, we integrate over

all possible values of ( Y ):

P(A) = ∫ f(x, y) dy = f(x)

Conditional Distribution

If we want to know the probability of humidity ( Y ) given a fixed temperature ( X

), we use the conditional distribution:

P(B|A) =
P(A ∩ B)

P(A)
⇒ fY |X(y|x) =

f(x, y)

f(x)

This ratio normalizes the joint probability to ensure that probabilities sum up to

one over the conditional distribution's domain.



Multivariate Moments

Multivariate moments extend the concept of moments (like mean and variance) to

cases involving two or more random variables. These moments help quantify the

joint behavior of variables.

Mixed Moments

For two random variables X and Y with means μX and μY, respectively, mixed moments

of order (m,n) are defined as:

Vm,n = E[(X − μX)m(Y − μY )n]

COVARIANCE

Most used is: Covariance

The covariance between X and Y, a commonly used mixed moment, measures how much X

and Y vary together:

Cov(X,Y ) = E[(X − μX)(Y − μY )] = E[XY ] − E[X]E[Y ]

If Cov(X,Y ) > 0 , X and Y  tend to increase together; if Cov(X,Y ) < 0, one increases

as the other decreases.

Correlation Coefficient

The correlation coefficient ρ standardizes covariance to a value between -1 and 1,
representing the strength and direction of a linear relationship:

ρ =
Cov(X,Y )

σXσY

Note: the inverse is not always true, i.e. uncorrelated DOESNT MEAN
independent.

Clear.

Covariance Matrix

In the multivariate context, we use a covariance matrix to summarize the variances

and covariances of a set of random variables. For a vector X = (X1,X2, … ,Xn):

ρ = 1: Perfect positive correlation

ρ = −1: Perfect negative correlation

ρ = 0: No linear correlation

Diagonal elements represent variances, i.e., Vii = Var(Xi)

Off-diagonal elements represent covariances, i.e., Vij = Cov(Xi,Xj)



Multivariate Gaussian Distribution

One important example of multivariate distributions is the multivariate Gaussian

(normal) distribution. Suppose X = (X1,X2, … ,Xn) consists of i.i.d. normal

variables, each with mean μ and variance σ2. Then X has a multivariate Gaussian

distribution:

X ∼ N (μ,V 2)

where:

The probability density function (pdf) for a multivariate normal is:

f(X = x;μ,V ) =
1

(2π)n/2|V |1/2
e− 1

2
(x−μ)TV −1(x−μ)

where |V | is the determinant of V

Example

μ is the vector of means for each variable.

V  is the covariance matrix.



Functions of Random Variables

Transforming random variables often yields new variables with their own

distributions. Suppose Y = g(X), where g is a function of X. The pdf of Y  is given

by:

fY (y) = fX(x)
dx

dy
where x = g−1(y)

In general, let X be a R.V. with probability function 𝑓(𝑥) and let 𝑌 = 𝑔(𝑋) be its

transformation. Assuming g(x) is invertible (but the inverse is not necessarily

unique), the probability function of Y can be derived in 3 steps:

∣ ∣Example

What if the transformation is not monotonic? i.e. what if not unique inverse?



Functions of Many Random Variables

Let X = (X1,X2, … ,Xn) be a random vector with a known joint probability density

function fX(x). Let Y = g(X) be a new random vector where each component of

Y = (Y1,Y2, … ,Ym) is a function of X.

Examples

Let X, Y  be two random variables with a known joint probability density function

fX,Y (x, y). Let Z = X + Y  be a new random variable. What is the distribution of Z?

Example

Then the pdf of Y can be expressed as:

fY(y) = fX(x) det
dx

dy

where ∣ ∣x = g−1(y) is the inverse transformation (assuming it exists)
dx
dy
 is the Jacobian matrix of partial derivatives

we take the determinant of the Jacobian.

In general:

fZ(z) = ∫ fX,Y (x, z − x) dx



Error Propagation

Let X be a random variable representing the measurement of a physical quantity,

and let Y = g(X) be its transformation. Suppose V (X) is known, which quantifies the

error on the measurement of X. What is the variance (error) of Y ?

In principle, we could compute the variance of g(X) analytically by exploiting the

definition. However, this is often impractical:

Alternatively, we can use the error propagation formula for approximating V (Y ):

In general, if X = (X1,X2, … ,Xn) and Y = g(X), then:

V (Y ) = (
dg

dX1
)

2

V (X1) + ⋯ + (
dg

dXn
)

2

V (Xn) + 2∑
i≠j

dg

dXi

dg

dXj
Cov(Xi,Xj)

Limitations

While convenient in practice, several assumptions must hold for error propagation

to be effective:

However, if X and Y  are independent, we can further decompose:

fZ(z) = ∫ fX(x)fY (z − x) dx

that is the convolution formula.

We may not know the distribution of X

Calculation could be too complex for direct computation.

Use first-order Taylor series expansion of g(X) around E(X) = μ

g(X) ≈ g(μ) + g′(μ) (X − μ)

Then:

V (Y ) = E [g′(μ)2 (X − μ)2] = g′(μ)2V (X)

This means the variance of Y  is proportional to the variance of X, scaled

by the square of the derivative of g(X) computed at μ.

Note: no assumptions about the distributions of Xi.

g(X) is smooth and can be well-approximated by a linear expansion.

Uncertainties in the random variable are relatively small, so higher-order

terms in Taylor expansion can be neglected.

Variances and covariances of X are known (or can be estimated).



Examples

Example 1

Let X1, X2 be two random variables and define Y = X1 + X2 and Z = X1X2.

Exercise: Derive the formula for V (Z).

If μX1 = E(X1) and μX2 = E(X2), the formula becomes:

V (Z) = μ2
X2
V (X1) + μ2

X1
V (X2) + μX1

μX2
Cov(X1,X2)

Example 2

Let X1, X2 be independent continuous Uniform(0, 1) random variables. Find the

density of Y = g(X1,X2) = X1 + X2 ⋅ X2.

Solution:

By applying error propagation formulas, we get:

V (Y ) = V (X1) + V (X2) + 2 Cov(X1,X2)

V (Z) = (
∂Z

∂X1
)

2

V (X1) + (
∂Z

∂X2
)

2

V (X2) + 2
∂Z

∂X1

∂Z

∂X2
Cov(X1,X2)

If X1 and X2 are uncorrelated:

Add errors quadratically for sum, Y  (or difference).

Add relative errors quadratically for product, Z (or ratio).

Do not apply when correlations are present.

Define the cumulative distribution function FY (y):

FY (y) = P(Y ≤ y) = P(g(X1,X2) ≤ y) = P((x1,x2) : g(x1,x2) ≤ y) = ∫ ∫ fX1,X2
(x1,x2) dx1 dx2





Statistical inference: estimators and information

Outline

How can we learn from data?

Statistical inference, or «learning», is the process of extracting knowledge about

a phenomenon from its own data.

Derived questions:

Parametric vs non-parametric inference

There are several approaches to statistical inference, depending on assumptions. A

key distinction is between parametric and non-parametric inference.

Parametric

We assume  the process is described by a function with a finite set of

parameters:

X ∼ F(x; θ),F = f(x; θ) : θ ∈ Θ

Where:

How can we learn from data?

Estimators

Maximum Likelihood

What is the distribution of the data? And what are its properties?

Typically, we cannot observe the whole population (limited time, resources, or

process not fully observable).

We resort to a «sample» instead and only observe limited evidence/data.

How to derive properties or models based on partial information?

How to quantify uncertainty?

How to test hypotheses and make predictions?

F is a family of functions parametrized by θ.

θ is the fixed (there is a true value that describes it, is not random) but

unknown (vector of) parameters.

Θ is the parameter space, i.e., all allowed values for θ.



Goal: Inference about distribution parameters θ.

Non-parametric
We do not assume  a specific functional form for F. It is modelled by a non-

finite number of parameters.

This means that F is modelled by a non-finite number of parameters

It's more flexible and we allow a more number of parameters.

Goal: inference about data characteristics, e.g. median as central tendency

Parametric vs non-parametric inference: example

Measuring the speed of sound in air:

We take 50 measurements under identical conditions.

Parameters of interest vs nuisance parameters

Imagine we know that we can describe the distribution F with a set of parameters,

now more than 1: X ∼ F(x; θ = {α,β})

More powerful if assumptions hold :)

Incorrect if assumptions are violated :(

we do not make assumptions on F

F has no parameter

More flexible, robust to outliers/deviations :)

More complex and less powerful than valid parametric alternatives :(

Parametric
Assume measurements follow a Gaussian distribution:

X ∼ F(x; θ) = f(x;μ,σ) =
1

σ√2π
e

−
(x−μ)2

2σ2 : μ ∈ R,σ > 0

Estimate the parameters μ, σ. Inference is based on N(μ,σ).

Non-parametric
No assumption on underlying distribution F. Use median and interquartile range

(IQR) for central tendency and spread.

Use median as measure of central tendency

Use interquartile (IQR) range for spread -> our description depends on

summary statistics of observed data: median and IQR



In all the parameters we chose parameters in which we are interested in and others

that we think are not that interesting.

Example: Gaussian distribution but we are interested in the estimation of the
expected value of the population, not how spread it is.

From population to sample

Typically we cannot observe the whole population: Hence we resort to sampling

Inference -> retrieving information about the population starting from a sample

Statistical inference: sub-problems

α: parameters of interest (e.g., μ).

β: nuisance parameters (e.g., σ), which determine the shape of f(x;μ,σ) but are

not of interest.

Population: entire group of individuals/entities under study

Often too large/impractical to observe

E.g. all electrons in the universe, all possible decays

Population quantities are referred to with Greek letters: 𝜃, 𝜇, 𝜎

Sample: subset of the population

Useful to make inference without observing all population

E.g. electrons revealed in a specific experiment

Sample quantities are referred to with Latin letters: 𝑥̅, s2

Must be representative of the population -> different sampling methods

ensure different properties (not covered here)

Statistical units: individual elements of the population/sample

Basic entities on which measurements/observations are made

E.g. single electron

1. Estimating parameters (point estimates, interval estimation).

I know the model and I want to estimate its parameters

2. Hypothesis testing.

Compare two models/hypotheses

3. Goodness-of-fit.

Measure how well a model/hypothesis fit the data (a model VS all the

others)



Data statistics and estimators

How do we estimate our parameters of interest, 𝜽?

We define a statistic as a generic function of data: t = t( →X) = t(X1, … ,Xn).

Bias and precision

We are conducting a statistic and we are conducting some inference assuming that x

is distributed in a F distribution.

Bias: The bias of a statistic t(X) as an estimator for θ is:

B(t(X)) = E(t(X)) − θ

Precision: The precision of a statistic t(X) is:

precision(t(X)) =
1

Vθ[t(X)]

Accuracy vs precision

Examples:

Parameters of interest: expected value (μ), variance (σ2).

Related statistics: sample mean (X̄), sample variance (s2).

How do we choose good statistics as estimators?

The bias measures how close, on average, the statistic is to the true

parameter value: Measures the accuracy of the statistic.

Ideally, we would like the bias to be as low as possible

A statistic with 0 bias is called unbiased estimator of 𝜽

The precision measures the dispersion of the statistic around its expected

value.

Measures the variability of the statistic.

A statistic with highest precision is called efficient estimator of 𝜽:

Vθ[t(X)] ≤ Vθ[t
∗(X)]

for any t∗.

Accuracy: How close the estimator is to the true value.

Precision: How variable the estimator is.



Mean Squared Error (MSE)

A measure of the quality of an estimator is given by the MSE:

MSE(t(X)) = Eθ [(t(X) − θ)2] = V (t(X)) + B(t(X))2

Consistency and sufficiency

Let X ∼ F(x; θ), F(f(x; θ) : θ ∈ Θ) and t(X) be a statistic. The statistics t(X) could have

the property of

Consistency: A statistic t(X) is consistent if:

t(X) → θ, as n → ∞

Sufficiency: A statistic t(X) is sufficient for θ if:

P(X|t(X), θ) = P(X|t(X))

Summary of data statistics properties

Let X ∼ F(x; θ), F(f(x; θ) : θ ∈ Θ) and t(X) be a statistic. Then t(X) will be good as an

estimator for θ when it satisfies the following properties:

Trade-off between bias and variance.

all information about 𝜽 is already contained in 𝑡(X)

it embeds all useful information for the parameters of interest

Unbiasedness: On average, does the statistic hit the true parameter value?
E(t(X)) = θ

In practice, we want low bias (ideally 0), which means low systematic

error: b = E(t(X)) − θ

Efficiency: How much does it vary around the true value?
V (t(X)) ≤ V (t∗(X)), for any t∗

In practice, we want as little variability around θ as possible.

Consistency: Does the statistic converge to the true value as the sample size

increases?



Point Estimation

Imagine we know that X ∼ F(x; θ), F{f(x; θ) : θ ∈ Θ}. Point estimation revolves around

providing a single "best guess" for a quantity of interest.

What can you 'best guess' are, for example:

Notes:

How can we provide a point estimate for a parameter θ?

1. Method of Moments

Let X ∼ F(x; θ) , F{f(x; θ) : θ ∈ Θ}, where θ = {θ1, … , θK} is a K-dimensional vector of

parameters. Then, the method of moments estimator θ̂n can be derived as follows:

t(X) → θ, that is:

limn→∞ P(|t(X) − θ| < ϵ) = 1

For n → ∞, we have that the estimator converges to a fixed value equal to

the true parameter (i.e., zero variance).

Sufficiency: Does it embed all useful information for the parameters of

interest?

P(X|t(X), θ) = P(X|t(X)) ∀ θ

This means that all information about θ is already contained in t(X).

Parameter of a distribution F

The whole distribution, e.g., cdf/pdf of F

A regression function r(X) assuming that X ∼ F

A prediction of a future value X

By convention, we denote our estimate as θ̂

θ is unknown but fixed, and is the true value.

However, θ̂ is a random variable as it depends on data

1. Method of moments

2. Maximum likelihood

Define the j-th moment αj, 1 ≤ j ≤ K as αj = αj(θ) = Eθ [X j] = ∫ xjdFθ(x)

The corresponding sample moment α̂j will be: α̂j = 1
n
∑iX

j
i

Then θ̂n is defined as:

α1(θ̂n) = α̂1

α2(θ̂n) = α̂2

…



Example:
Let X1, … ,Xn ∼ Bernoulli(p).

Then: α1 = E(X1) = p and α̂1 = 1
n
∑iXi.

Therefore: p̂n = 1
n
∑iXi

2. Likelihood function and Maximum Likelihood

Let X ∼ F(x; θ), F{f(x; θ) : θ ∈ Θ}, where θ = {θ1, … , θK} is a K-dimensional vector of

parameters.

Given a random vector X = {X1, … ,Xn} of i.i.d. random variables, we can write the

joint density as:

P(X) = f(X; θ) =
n

∏
i=1

f(Xi; θ)

Then, the likelihood function is defined as:

Ln(θ; X) =
n

∏
i=1

f(Xi; θ)

Describes how likely it is to observe given data X under F depending on a

specific parametrization θ

The method of maximum likelihood provides estimates that maximize the likelihood
of the observed data:

θ̂MLE = arg max
θ

Ln(θ; X)

The basic assumption is that what we are observing is not rare

αK(θ̂n) = α̂K

System of K equations with K unknowns

In practice, we estimate each moment by its sample version

Nothing but the joint density as a function of the parameter θ instead of the

data X

Ln : Θ → [0, ∞)

The likelihood is not a density function → does not integrate to 1

degree of agreement between observed data and F parametrization by θ

This assumption means that the observed data X is typical or representative of

the underlying distribution.

Parameter estimates are retrieved through optimization of the likelihood

function with respect to θ:

1. Derive with respect to θ

2. Set equal to zero and check which zeros are maximum points



Rewrite the Likelihood

By definition, for independent random variables the likelihood can be written as a

product:

Ln(θ;X) =
n

∏
i=1

f(Xi; θ)

Taking the logarithm is convenient for differentiation

→ we typically work on log-likelihood instead:

ℓ(θ) = logLn(θ;X) =
n

∑
i=1

log f(Xi; θ)

FORMAL: Maximum Likelihood estimation

More formally, let X ∼ F(x; θ), F(f(x; θ) : θ ∈ Θ), where θ = (θ1, . . . , θk) is a K-dimensional

vector of parameters. The maximum likelihood estimator of θ is defined as:

θ̂MLE = arg max
θ

Ln(θ;X)

In practice, to calculate θ̂MLE we can:

.

Note that optimal point do not change!

Compute the log-likelihood: ℓ(θ) = logLn(θ;X)

Derive the log-likelihood: S(θ) =
dℓ(θ)
dθ

→ S(θ) typically referred to as the score function

Set S(θ) = 0 and solve for θ to find critical points

Check which critical points correspond to a maximum → second derivative

negative at θ̂MLE



What is information in statistics?

The concept of information in statistics is related to the "knowledge" one can

derive from data.

Example: You have performed an experiment and collected some data:

In general, any measure of statistical information should satisfy some properties:

Note: Data reduction typically implies information loss.

⇒ How to go from raw data to high-level summaries (reconstruction) minimizing

information loss?

Shannon Information

Shannon’s definition relates information to uncertainty.

Let X be a random variable with K possible outcomes x1, … ,xK, each with

probability pi. Then the information coming from observing an outcome xi is defined

as:

I(xi) = log(
1

pi
) = − log pi, (base b arbitrary)

⇒ The smaller pi, the higher the information.

Example: talking on the phone

Starting from the above definition, Shannon information associated to the random

process X is defined as its expected information:

H(X) = E[I] = −
K

∑
i=1

pi log pi (also called entropy)

Intuition: The greater the entropy, the higher the information we gain by
observing the random process.

What is the information data provide about the model?

The more data you collect, the more information you have. This improves

parameter estimates or model understanding.

Related to the parameters of interest.

Information should focus on what you’re studying. Data irrelevant to your

parameters should not increase information.

Should be related to precision ⇒ the larger the information, the better

the precision.

1. 1y old saying "Da" with probability 1

2. 3y old saying 500 words with probability p1, p2, . . . p500

More info in the second



Fisher Information

Fisher’s definition links information to the knowledge a sample provides about an

unknown parameter.

Let X = (X1, … ,Xn) be a random vector representing a sample of n observations, and

let L(θ; X) be the corresponding likelihood function depending on the parameter θ.

Then the information carried by the sample about θ is defined as:

I(θ) = E [(
∂ℓ(θ; X)

∂θ
)

2

] = E [(
∂

∂θ
logL(θ; X))

2

]

Under quite general regularity conditions, we have: E [ ∂ℓ(θ;X)
∂θ ] = 0.

Hence, I(θ) = Var( ∂ℓ(θ;X)
∂θ ).

⇒ Fisher information is related to the variance of the score function.

Properties:

In addition, if ℓ(θ; X) is also twice differentiable with respect to θ, then:

I(θ) = −E [
∂ 2ℓ(θ; X)

∂θ2
]

⇒ Fisher information is also linked to the curvature of the likelihood.

Intuition: Higher Fisher information implies that the data provides more
information about the parameter, resulting in a smaller variance of the estimator.

Cramér-Rao Theorem (also Rao-Cramér-Frechet or RCF bound)

This theorem is a powerful tool that sets a lower bound for the variance of

unbiased estimators for a parameter θ.

Fisher information is non-negative.

It plays a central role in the Cramér-Rao lower bound, which provides a lower

bound for the variance of unbiased estimators.

Let θ̂ be an unbiased estimator for a parameter θ.

Let f(X, θ) be the probability distribution of the data X.



Var(θ̂) ≥
1

I(θ)

⇒ The inverse of Fisher information is the lower bound for the variance of any

unbiased estimator of θ.

Note: This provides a reference setting for evaluating the efficiency of an

estimator:

efficiency(θ̂) =
I(θ)

Var(θ̂)
≤ 1

Maximum Likelihood Estimators: properties

Under fairly weak assumptions, MLE estimators have several nice properties:

√n(θ̂ − θ) → N(0, I(θ)−1)

BONUS: MLE song for «tuning parameters» Cringest moment in class

Then the Cramér-Rao theorem shows that:

When efficiency(θ̂) = 1, then θ̂ is said to be an optimal estimator for θ (also known

as the Minimum Variance Unbiased Estimator or MVUE).

Equivariance:

Let θ̂ be the MLE estimator for θ, and let g(⋅) be a bijective transform

(one-to-one).

Let γ be a different parameterization such that γ = g(θ).

Then γ̂ = g(θ̂).

⇒ We can easily find MLE for transforms of the parameter θ, e.g., useful

when changing units, scale, or parametrization.

Consistency: As the sample size increases, the MLE converges to the true

parameter value.

Asymptotic efficiency: Among all well-behaved estimators, the MLE has the
smallest variance as n → ∞.

Asymptotic Normality:

d

As the sample size increases, the MLE estimator distribution approaches a

Gaussian centered around the true θ.

Note: I(θ) is the Fisher information computed at the true value θ (often

computed analytically).

“Often” a function of a sufficient statistic.



Examples of Maximum Likelihood: estimators for
popular distributions

Exponential distribution: estimator for average number of
events

Let X be a random variable that models the decay time of a radioactive nucleus,

such that:

X ∼ Exp(λ)

where λ is the average number of decays per year.

Exponential distribution: estimator for average lifetime

Let X be a R.V. that models the decay time of a radioactive nucleus, such that:

X ∼ Exp(τ)

where τ is average lifetime in years.

What is the MLE for λ?

Is λMLE unbiased estimator for 𝝀?

What is the MLE for 𝝉?

Mobile User



Gaussian distribution: estimator for μ

Let X be a R.V. that models the measurement of the speed of light in a given

medium. Repeated measurements yield slightly different results that can be

described by a Gaussian distribution, with unknown mean parameter μ:

X ∼ N(μ, σ2)

where μ is the true measurement value and σ2 (Nuisance parameter, we assume this

is fixed and known a priori) is the instrument resolution

What if σ2 is unknown and we want to estimate it?

Poisson distribution: asymptotic distribution of λMLE

Let X be a R.V. that models the dark count of photons of our detector, i.e. the

number of false positive counts our detector registers due to thermal noise and

background effect. Since the detector works very well in general, we can assume

dark counts are rare events, so the process can be described by a Poisson

distribution, with unknown intensity parameter λ.

Is τ MLE unbiased estimator for 𝜏?

What is the MLE for μ?

For the Law of Large Numbers we already know μMLE is unbiased

Note: although we did not need σ2 to compute μMLE, the standard errors of

μMLE still depend on it

σ2
MLE = S ∗

We already know this is a biased but consistent estimator for σ2

-> MLEs are not always unbiased for finite samples!

Mobile User



What is the asymptotic distributions of λMLE?
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1. Hypothesis testing

Outline

How to test hypothesis?

Hypothesis Testing:
A structured approach to evaluate claims about a population using sample data

under uncertainty.

Competing Hypotheses:

- Null Hypothesis H0: Represents the given assumption or status quo.
- Alternative Hypothesis Ha: Challenges the null hypothesis.

Determine whether data are compatible with the null hypothesis based on a figure

of merit (e.g., test statistic, p-value).

Hypothesis Testing: Key Ingredients

Components:

Hypothesis testing: intuition

How to test hypotheses?

Hypothesis testing

Examples

1. Null Hypothesis H0:

Hypothesis to test (e.g., "The mean temperature of a star is 5000K").

2. Alternative Hypothesis H1:

Competing hypothesis (e.g., "The mean temperature of a star is not

5000K").

3. Test Statistic:

A figure of merit summarizing sample data to assess H_0.

4. Significance Level (α):

Confidence level (common choices: 0.05, 0.01; in physics: 5σ\sigma).

5. p-value (p):

Probability of observing the data (or something more extreme) under H_0.

6. Decision Rule:

If p ≤ α: Reject H_0.

If p > α: Fail to reject H_0.



Frequentist Approach:

"Assume H0 is true and look for evidence in the sample that contradicts this

assumption."

Analogy: Courtroom Trial

Hypothesis Testing: Formal Definition

Let X describe a random process with probability distribution f(X, θ), where θ is

unknown.

Key Idea: Hypothesis testing determines a decision rule to evaluate whether
observed data X are compatible with H0.

Hypothesis Testing: Decision Rule

Decision Basis

Reason: If sample data are very unlikely under H0, we question the validity of H0.

H0: The defendant is innocent.

H1: The defendant is guilty.

If evidence is strong enough (low p-value), we reject H0 (innocence).

If evidence is weak (high p-value), we fail to reject H0 (no conviction).

1. Null Hypothesis (H0):

Hypothesis about the value of θ, e.g., θ = θ0.

Assumes that the true value of θ is a specific value θ0.

This is the hypothesis we want to test.

2. Alternative Hypothesis (H1):

Hypothesis about the parameter value that differs from H0.

Examples:

Simple hypothesis: H1 : θ = θ1.

Composite hypothesis: H1 : θ ≠ θ0 or H1 : θ > θ0.

3. Data Representation (X):

Let X = {X1, … ,Xn} represent n IID realizations of the random variable X.

Example: Observations of a single particle, event, or whole experiment.

Ideally, base decisions on P(H0 ∣ X), but this is not possible in a frequentist

approach.

This is because the frequentist framework considers probabilities as long-

run frequencies of events. In this approach, P(H0∣X) (the probability of
the null hypothesis given the data) does not have a meaningful

interpretation because hypotheses are treated as fixed (true or false),

not random variables.

Instead, use the likelihood P(X ∣ H0) and ask:

“If H0 is true, what is the probability of observing the sample data X?”



In practice, we need two elements to apply this principle:

The key is to choose a test statistic for which we know P(t(X) ∣ H0).

When that is the case, hypothesis testing consists in two steps:

Decision Rule: If the observed data is rarer than the significance level α, reject

the null hypothesis H0.

Interpretation: Statistically significant evidence against H0.

Visual Representation

Here 2 examples, a simple one and a more complex to use also the t(x).

Example 1

1. Test Statistic (t(X)):

that is a characteristic of sample data used as a benchmark.

Must be based on sample data.

We must know how to compute P(t(X) ∣ H0).

2. Significance Level (α):

Minimum probability threshold we are willing to accept.

Outcomes rarer than α lead to rejection of H0.

Also called the "size of the test."

1. Compute the p-value:

The probability of observing outcomes at least as rare as the sample data

(i.e., equally or more unlikely).

2. Compare the p-value with the significance level α:

If p-value ≤ α → Reject H0.

If p-value > α → Fail to reject H0.



Example 2

Physics Example: Particle Lifetime Hypothesis Testing

We are testing whether a particle decays with a mean lifetime ofτ0 = 2.5μs based on

experimental data.

Hypotheses

This is a two-tailed test because we are testing for deviation in either
direction.

Data Representation

The decay times are assumed to follow an exponential distribution, which leads to

the sample mean t̄ being normally distributed for large n:

t̄ ∼ N (μ = τ0,σ =
τ0

√n
)

where:

Significance Level

1. Null Hypothesis (H_0): The particle's mean lifetime is τ0 = 2.5μs

2. Alternative Hypothesis (H_1): The particle's mean lifetime is different from

τ ≠ 2.5μs

Observed decay times of n = 30 particles are recorded.

Sample mean decay time: t̄ = 2.3μs

μ = τ0 = 2.5μs

σ = τ0

√n
= 2.5

√30
≈ 0.457μs



We choose a significance level of α = 0.05, meaning we will reject H0 if the

probability of observing such an extreme result (or more extreme) is less than 5%.

The test statistic is the sample mean:

t(X) = t̄ =
1

n

n

∑
i=1

ti

We compute the probability of observing a mean decay time at least as extreme as

the observed value t̄ = 2.3μs, under H0.

The p-value is:

p = P(t̄ ≤ 2.3μs or t̄ ≥ 2.7μs)

since the normal distribution is symmetric

P(t̄ ≤ 2.3) = ∫
2.3

−∞
f(t)dt

where f(t) is the PDF of N (2.5, 0.457). This is done using the cumulative

distribution function (CDF).

The p-value is p = 0.661.

Conclusion: Since p > α, we fail to reject H_0.

Interpretation

There is not enough evidence to conclude that the particle's mean lifetime differs

from τ0 = 2.5μs.

The observed data is consistent with the null hypothesis.
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Here instead a second way to look at hypotesis testing.



2. Hypothesis Testing: Rejection Regions

Another way to interpret hypothesis testing is by defining a critical region or
rejection region RRα:

Decision Rule

The rejection region can be expressed in terms of a critical value k:

P(X ∈ RRα ∣ H0) ≤ α ⟹ P(X > k ∣ H0) ≤ α

To choose an appropriate rejection region, consider H1:

This framework ensures we reject H0 only when there's sufficient evidence favoring

H1.

Example:

The rejection region includes rare outcomes under H0.

The probability of the critical region is the significance level α, i.e.,

P(X ∈ RRα ∣ H0) ≤ α.

If the observed outcome belongs to the rejection region, reject H0.

k separates the rejection region from the rest of the sample space.

It can be X > k or X < k depending on the test.

Place RRα where outcomes are rare under H0 but common under H1

Example:

P(X ∈ RRα ∣ H0) is low, but P(X ∈ RRα ∣ H1) is high.



Interpreting test results

Regarding the final decision of a test, there are some subtle nuances to bear in

mind

Type-I, Type-II errors

Rejecting H0:

Does not confirm H0 is false or H1 is true.

Indicates sufficient evidence against H0 and in favor of H1.

Failing to reject H0:

When p-value > α:

Either H0 is true.

Or H0 is false, but the test has low power.

Misinterpretation of p-value:

p-value is not the probability of the hypothesis: p-value ≠ P(H0|X)

Represents the probability of observed data under H0: P(X|H0)

Informally, it measures evidence against H0.

Can be seen as the smallest significance level at which H0 is rejected.

Scientific relevance:

Statistically significant results may lack practical significance.

Example: θ ≠ θ0 but with negligible impact on the theory.

Type-I errors: Reject H0 when it is actually true.

Happens with probability P(X ∈ RRα|H0) ≤ α.

Called the significance level or size of the test.

Interpretation of α: Probability of erroneously rejecting H0.



Uniformly Most Powerful test (UMP)

A test is said to be Uniformly Most Powerful (UMP) if:

This is equivalent to requiring a single critical region to ensure maximum power

independently of the alternative hypothesis, leading to a model-independent test.

Intuition

In brief, UMP tests can be summarized as follows:

Type-II errors: Fail to reject H0 when H1 is true.

Happens with probability P(X ∈ Ω ∖ RRα|H1) = β.

1 − β is called the power of the test.

Interpretation of 1 − β: Probability of correctly rejecting a false null

hypothesis when H1 is true.

It maximizes the power for all possible values of the alternative hypothesis.

For a fixed significance level α.

In other words, no matter the true parameter value under H1, the UMP test

gives the best chance of rejecting H0.

In High-Energy Physics (HEP), we often construct tests such that:

H0: Standard Model (or "background only").

α: Probability of rejecting H0 when it is true (false discovery rate,

typically 5σ).

H1: An interesting alternative theory (e.g., SUSY, Z ′, etc.).

We aim for high power with respect to any possible alternative new

theory.

Unfortunately, there is no general guarantee of having a model-independent

test.

Solution: Select a critical region that maximizes the power for a specific

H1.

Power of a test:

The probability of rejecting H0 when H1 is true.

Ideally, we want the power to be as large as possible because this means

the test is sensitive to detecting true differences.

Why is UMP desirable?:



How to find an UMP test?

Neyman-Pearson Lemma

The Neyman-Pearson lemma provides an elegant way to find a UMP test for testing

simple hypotheses:

Limitations:

Walt test

Let θ be a scalar parameter and θ̂ be its estimate. Also, let σ̂ be the estimated

standard error of θ̂.

Consider testing: H0 : θ = θ0 versus H1 : θ ≠ θ0.

A UMP test guarantees that, regardless of the true value of the parameter

under H1, the test will have the highest chance of detecting the

alternative hypothesis.

Competing tests:

Different tests can have different power properties.

A test might be powerful for one value of H1 but not for others.

A UMP test, if it exists, ensures that no matter what value H1 takes, it

is the most powerful option.

Let H0,H1 be two simple hypotheses, i.e.,

H0 : θ = θ0 vs H1 : θ = θ1 ≠ θ0

Let t(X) =
L(θ1)
L(θ0)  be a test statistic defined as the ratio between the likelihoods

under the two hypotheses, L(θ ∣ X,H1) and L(θ ∣ X,H0) respectively.

For a fixed significance level α, the Neyman-Pearson lemma shows that:

The decision rule: "reject H0 when t(X) > k" is the UMP test, where k is chosen

such that Pθ0
(t(X) > k) = α.

This result relies on the assumptions on the underlying data distribution:

What if L(θ) is incorrect, or if we do not know it?

Even if we know L(θ), deriving the distribution of the ratio is not always

possible:

Requires numerical approximations.

UMP tests do not always exist:

Neyman-Pearson lemma only holds for simple hypotheses.

What about composite hypotheses? (i.e., one-sided or two-sided tests)

When θ̂ is Normal:

θ̂ ∼ N(θ0,σ2)  →  
θ̂ − θ0

σ̂
∼ N(0, 1)



Example:

Comparing two sample proportions

We are studying the decay rates of two radioactive isotopes, A and B, over a fixed

time period t. Let X be the random variable describing these processes, such that:

XA ∼ Bern(pA), XB ∼ Bern(pB), and XA ⊥ XB.

Now imagine we observe two sufficiently large samples of decays for each isotope,

i.e., nA,nB > 30, and we want to test whether the decay probabilities of the two

isotopes are significantly different.

Then we can define the Wald test as:



For this problem, we can use a Wald test (Z-test) for comparison of two sample

proportions (frequencies).

→ p-value and rejection region can be computed based on the standard normal

distribution.

Note:

When the sample size is small, we can use the exact Fisher test

Comparing two sample means

We are studying the thermal conductivity of two materials. Let X be the random

variable describing these processes, such that XA ⊥ XB.

Now imagine we observe two sufficiently large samples, and we want to test whether

the average insulation properties of the two materials are significantly

different.

For this problem, we can use a Wald test (Z-test) for comparison of two sample

means.

→ p-value and rejection region can be computed based on the standard normal

distribution.

Note:

When the sample size is small, if X ∼ N and homoscedastic (same variance), we can

use the t-Student test.

Comparing two sample variances

We are evaluating two different particle detector designs for a new high-energy

physics experiment. Let X be the random variable describing measured energy of

each detector for a known calibration source, such that: XA ∼ N(μA,σ2
A

),

XB ∼ N(μB,σ2
B), and XA ⊥ XB.

Hypothesis: H0 : pA = pB vs H1 : pA ≠ pB

Test statistic: Z = p̂A−p̂B

√ p̂A(1−p̂A)

nA
+

p̂B(1−p̂B)

nB

   N(0, 1)
nA+nB→∞

−→

Hypothesis: H0 : μA = μB vs H1 : μA ≠ μB

Test statistic: Z = X̄A−X̄B

√ σ2
A

nA
+

σ2
B

nB

   N(0, 1)
nA+nB→∞

−→

If σ2
A,σ2

B are unknown, we estimate them through their sample counterparts

s2
A

, s2
B.



Now imagine we observe two sufficiently large samples, and we want to determine if

there is a significant difference in detector precision when measuring particle

energies.

For this problem, we can use a Fisher-Snedecor test (F-test) for comparison of two

sample variances:

→ p-value and rejection region can be computed based on the Fisher-Snedecor

distribution.

Comparing more sample means

What if we want to compare more than two sample means? For example, compare K

samples and test whether they all belong to the same population.

If we assume the measurements in each sample are:

Then we can use the Analysis Of Variance test (ANOVA-test) for comparison of K

sample means:

→ p-value and rejection region can be computed based on the Fisher-Snedecor

distribution.

Testing binned distribution

Suppose we are analyzing data from a particle physics experiment where we've

measured the invariant mass of a large number of particle decay events. We want to

Hypothesis: H0 : σ2
A = σ2

B (homoscedastic) vs H1 : σ2
A ≠ σ2

B

Test statistic: F =
s2
A

s2
B

   F(nA − 1,nB − 1)
H0

−→

where s2
A

, s2
B are the sample variances, and F is the Fisher distribution

Independent

Normal

Homoscedastic, i.e., they have the same variance

Hypothesis:
H0 : μ1 = μ2 = ⋯ = μK = μ \ \ vs \ \ H1 : μi ≠ μj for at least a couple i, ji,j=1,...,n

Test statistic:

F =
V (X)between

V (X)within
   F(K − 1,n − K), where:
H0

−→

V (X)between =
∑K

k=1 nk(X̄k−X̄)2

K−1

V (X)within =
∑K

k=1 ∑
nk
i=1(Xk,i−X̄k)2

n−K

n = ∑K
k=1 nk



determine if our observed mass distribution fits a theoretical model, which could

confirm or refute the presence of a new particle.

To do so, we can organize mass measurements into a histogram with H bins and

compare the entries in each bin to the theoretical distribution of a given model.

Let Xh be the random variable describing the number of events in the i-th bin,

such that Xh ⊥ Xk for h ≠ k.

If we have a sufficiently large sample in each bin (say > 5), then we can use a

Pearson Chi-squared test (χ2-test):

→ p-value and rejection region can be computed based on the Chi-squared

distribution.

Goodness of Fit

Goodness of fit refers to how well a statistical model fits a set of observations.

Pearson’s χ2 Statistic

Test statistic for comparing observed data →n = (n1, … ,nN) (ni independent) to

predicted mean values →ν = (ν1, … , νN):

χ2 =
N

∑
i=1

(ni − νi)
2

σ2
i

, where σ2
i = V [ni]

(Pearson’s χ2 statistic)

χ2 is the sum of squares of the deviations of the ith measurement from the ith

prediction, using σi as the “yardstick” for the comparison.

For ni ∼ Poisson(νi), we have V [ni] = νi, so this becomes:

χ2 =
N

∑
i=1

(ni − νi)
2

νi

Hypothesis: H0 : ph = πh ∀ h = 1, … ,H vs H1 : ph ≠ πh for at least one hh=1,…,H

Test statistic: χ2 = ∑
H
h=1

(nh−nπh)2

nπh
   χ2(H − M − 1)
H0

−→

where nh is the observed number of events in bin h, and nπh is the expected

one.

M is the number of fitted parameters.

It describes the discrepancy between observed values and expected values under

the model in question.

Can be seen as a particular case of hypothesis testing:

More general alternative → H1: all possible alternatives.

Note: Often we test for goodness of fit, but our hope is poor agreement:

A failed test means rejecting H1: current knowledge → discovery!



Pearson’s χ2 Test

If ni are Gaussian with mean νi and std. dev. σi, i.e., ni ∼ N(νi,σ
2
i ), then Pearson’s

χ2 will follow the χ2 pdf (here for χ2 = z):

fχ2(z;N) =
1

2N/2Γ(N/2)
zN/2−1e−z/2

If the ni are Poisson with νi ≫ 1 (in practice OK for νi > 5), then the Poisson

distribution becomes Gaussian, and therefore Pearson’s χ2 statistic here also

follows the χ2 pdf.

The χ2 value obtained from the data then gives the p-value:

p = ∫
∞

χ2

fχ2(z;N) dz

The χ2 per Degree of Freedom

Recall that for the chi-square pdf for N degrees of freedom:

E[z] = N ,V [z] = 2N .E[z] = N , V [z] = 2N

This makes sense: if the hypothesized νi are right, the RMS deviation of ni from νi
is σi, so each term in the sum contributes ∼ 1.

One often sees χ2/N reported as a measure of goodness-of-fit. But it is better to

give χ2 and N separately. Consider, e.g.:

χ2 = 15, N = 10 → p-value = 0.13,

χ
2 = 150, N = 100 → p-value = 9.0 × 10−4

i.e., for N large, even a χ2 per dof only a bit greater than one can imply a

small p-value, i.e., poor goodness-of-fit.

Example:

Likelihood Ratio Test (LRT)

The Look-Elsewhere Effect

Definition



Example

Hypothesis Testing

Correction Methods

The graph shows data with a bump around m0, which could either represent a true

signal or a fluctuation. Proper statistical methods are needed to determine

significance.

The significance of an observed signal

The look-elsewhere effect, also known as multiple testing, refers to the

increased probability of a false positive result (Type I error) when multiple

independent tests are performed on the same dataset.

Intuition: Repeatedly looking for deviations from known distributions

increases the chance of observing false positives due to random fluctuations.

Suppose a model for a mass distribution predicts a peak at mass m with

amplitude μ. The observed data show a bump at mass m0.

Question: How consistent is this bump with the no-bump hypothesis (μ = 0)?

1. If m0 is known a priori:

Compute a local p-value for the specific mass m0.

2. If m0 is not fixed:

Compute a global p-value allowing m0 to move freely:

αglobal ≈ αlocal × N

where N is the number of independent tests.

Monte Carlo simulations: Simulate the full testing process to account for
multiple testing.

Bonferroni corrections: Adjust α by dividing it by the number of tests.

Benjamini-Hochberg procedure: Control the false discovery rate (FDR).

Total events consist of:

nb: Events from known processes (background).

ns: Events from a new process (signal).

If ns and nb are Poisson random variables with means s and b, then n = ns + nb is

also Poisson with mean s + b.



Probability Distribution:

P(n; s, b) =
(s + b)ne−(s+b)

n!

Example: Observing nobs = 5

Hypothesis s = 0 (no signal):

p-value = P(n ≥ 5; b = 0.5, s = 0) = 1.7 × 10−4 ≠ P(s = 0)!

Significance from p-value

Relation Between p and Z:

p = ∫
∞

Z

1

√2π
e−x2/2dx = 1 − Φ(Z)

Z = Φ−1(1 − p)

The Significance of a Peak

Hypothesis Testing

Example:

p-value for s = 0:

P(n ≥ 11; b = 3.2, s = 0) = 5.0 × 10−4

Conclusion: The small p-value indicates the peak is unlikely under the background-
only hypothesis.

Questions to Consider:

Background mean b = 0.5. Should we claim evidence for a new discovery?

Significance Z: The number of standard deviations a Gaussian variable would
need to fluctuate in one direction to give the same p-value.

Φ: Cumulative distribution function of the standard normal distribution.

Each bin (observed) is a Poisson random variable.

Means are given by dashed lines (background).

In the two bins with a peak:

Observed entries: n = 11.

Background mean: b = 3.2.

Look-Elsewhere Effect (LEE):

How many x distributions have been analyzed?

For example, looking at 1000 histograms increases the probability of

finding a 10−3 effect.

Adjust for the probability of finding a peak anywhere in the histogram.



When to Publish: Why 5 Sigma?

Reasons for a High Threshold:

Key Reminder: The p-value is the first step, not the sole criterion for
publishing. Consider how compatible the data are with the new phenomenon.

Adjusted Threshold:

Combining p-values

Challenges:

Resolution Consistency:

Is the observed width consistent with the expected x resolution?

Take an x window several times the resolution for verification.

Analysis Cuts:

Were the cuts adjusted to enhance the peak? If so, freeze the cuts and

repeat the analysis with new data.

Decision to Publish:

Evaluate whether the observed effect is robust enough to justify

publication.

HEP Standard: A p-value of 2.9 × 10−7, corresponding to a significance Z = 5 (5-

sigma), is typically required to claim a discovery.

1. Cost of False Discovery:

Announcing a false discovery has significant consequences.

2. Uncertainties in the Model:

Address systematic and statistical uncertainties.

3. Look-Elsewhere Effect:

Correct for multiple testing.

4. Extraordinary Claims:

“Extraordinary claims require extraordinary evidence.” – Carl Sagan

The p-value quantifies the probability that the background-only model explains

the observed fluctuation.

Not intended to address:

Hidden systematics or high thresholds for a significant discovery.

If LEE is well-managed, the threshold for discovery could reasonably be closer

to 3σ than 5σ.

Scenario: Two experiments test the same hypothesis H0:

Experiment 1 reports 3σ, Experiment 2 reports 5σ.

How to combine the p-values p1 and p2?

Wrong Approach: pcomb = p1/p2.



Notes:

Correct Approach: Use the Fisher method:

pcomb = P(p1p2[1 − ln(p1p2)])

This ensures the combined p-value reflects the joint significance.

The Fisher method generalizes to multiple p-values but is not associative.

A combined test statistic tcomb should be computed when possible.



Interval estimation

Outline

How to measure uncertainty about parameter
estimates?

From Point Estimates to Intervals

What We Have Covered So Far:

How to measure uncertainty about estimates?

Interval estimation

Examples

1. Methods for Point Estimation:

Maximum Likelihood Estimation (MLE).

Method of Moments (MoM).

2. Point Estimators' Properties:

Bias

Consistency

Efficiency

Sufficiency

3. Sampling Distributions:

BUT: Is a single number (point estimate) enough?



The need for interval estimates

How can we improve and complete the information of point estimates?

Point estimates are affected by various uncertainties:

A range of values (interval estimates) is safer and more informative than a
single-point estimate.

Interval Estimation

Confidence Intervals

A confidence interval [a, b] provides a range of plausible values for a parameter

with a given confidence level.

Key Idea

Simple Approach

Let θ̂ ∼ g(θ̂; θ) be an estimator with PDF g(θ̂; θ).

.

Statistical fluctuations

Finite sample size

Measurement precision

Systematic effects

Goal: Rigorously quantify uncertainty.

Builds on the estimator’s sampling distribution.

Key aspects:

θ̂ is random; θ is fixed.

Shape of the distribution depends on:

Sample size

True parameter value

Estimation method

Balance between:

Width (precision): Narrow intervals give precise estimates.

Confidence (reliability): Higher confidence increases reliability but

widens the interval.

g Refers to the probability density function (PDF) of the estimator θ̂ for a

parameter θ. This PDF describes the distribution of the estimator θ̂ under

repeated sampling, given the true value of the parameter θ.

Provide uncertainty as:

θ̂obs ± σ̂
θ̂



Formal Definition

Let vβ(θ) and uα(θ) be the lower and upper bounds of an interval for θ̂. The

confidence level is 1 − α − β.

More Formally:

θ̂obs: Observed value of the estimator.

σ̂
θ̂
: Sample estimate of the standard deviation (standard error) of g(θ̂; θ).

Typically used for error bars in plots

Special Case: Gaussian g(θ̂; θ)

Confidence can be quantified precisely.

Note: This assumption does not always hold.

Intuition: Find endpoints [vβ(θ),uα(θ)] such that:

P (vβ(θ) ≤ θ̂ ≤ uα(θ)) = 1 − α − β

1. Define α and β:

α = P(θ̂ ≥ uα(θ)) = ∫ ∞
uα(θ) g(θ̂; θ)dθ̂

β = P(θ̂ ≤ vβ(θ)) = ∫ vβ(θ)
−∞ g(θ̂; θ)dθ̂

2. Solve these integrals for vβ(θ) and uα(θ):

By construction [vβ(θ),uα(θ)] has 1 − α − β coverage for θ̂.

What about θtrue?

When the estimator is well-behaved, the endpoints 𝜈𝛽(𝜃) , u𝛼(𝜃) are monotonic

functions of 𝜃

If θobs falls in νβ(𝜃), uα(𝜃) then the interval (𝑎,𝑏) cover θtrue.



In practice

In practice, the recipe to find the interval (𝑎,𝑏) boils down to solving

Interpretation: if we were to repeat the experiment under same conditions many
times, an interval built in this way would contain the true parameter value, 𝜃, (1

− 𝛼 − 𝛽) ∙ 100% of the times

.

.



General Remarks on Confidence Intervals

Examples

Mean of Gaussian confidence interval

Poisson confidence interval

1. 

2. 

3. 



Limits near physical boundaries

How to handle estimates near physical boundaries of parameter values?

Confidence intervals by inverting a test

Other methods for building confidence intervals



the image is Likelihood/χ² Method.



Bayesian inference

Outline

Why we need another approach?

Frequentist limitations

Although frequentist approach is solid and widespread, it has several limitations:

Bayesian philosophy

In general, Bayesian statistics is based on a completely inverted conception of

randomness:

Bayesian advantages

Given the previous formulation, the Bayesian approach entails several advantages

Why we need another approach?

Overview of Bayesian approach

Examples

p-value misinterpretation: p-value ≠ 𝑃(𝐻)

Same for confidence intervals: 𝑃(𝜃 ∈ 𝐶.𝐼.) ≠ 1 − α

Struggle to incorporate prior knowledge

Many theoretic results hold only asymptotically

Difficult to deal with small samples

Huge statistics needed for rare events

Model comparison is challenging

E.g. LRT does not hold for non-nested hypothesis

Data is fixed, parameters are uncertain

Also, probability is a measure of belief

Not «long-run frequency of occurrence» as in frequentist settings

The whole mechanism is based on:

Prior knowledge

Bayes theorem as a tool to provide prior updates → prior knowledge is

inherently incorporated in our analysis

Inference is based on the result of the update process: posterior distribution

Direct probability statements about parameters

Natural incorporation of prior knowledge



Bayes’ theorem

Bayes’ theorem provides a nice mechanism to update probability in light of new

evidence:

Key Insights:

- Bayes’ Theorem updates beliefs based on new evidence → resembles how we think

- It accounts for both the strength of the evidence and prior knowledge

- In inference, we look at these blocks as distributions!

Prior distribution

A prior distribution represents our beliefs about the parameters before looking at

the data

Conjugate priors

A prior distribution (ex: probability of disease) is conjugate to a likelihood

function if the resulting posterior distribution is in the same probability

distribution family as the prior.

Better handling of uncertainty and small samples

Intuitive framework for model comparison

Alignment with scientific process of updating belief

Encodes what we know a priori about the possible values of the parameter

Prior choice is a critical step and it affects our results – Especially

crucial when we have limited data!

Types of prior distributions:

Informative

Weakly informative

Non-informative

Conjugate

Hierarchical priors for hyperparameters

Important to conduct sensitivity analysis and check robustness to prior choice

With family we mean the same distribution but different parameters

(Poisson(2), Poisson(3))



Key properties:

Here an example that explains better

Conjugate priors: Beta prior for Binomial data

Let 𝑋 ∼ 𝐵𝑖𝑛(𝑛,𝑝) describe the process we are studying. We are interested in the

parameter p

Interpretation:

Common conjugate prior pairs

We have 6 families of likelihood/conjugate prior pairs:

Let θ be the parameter of interest

Prior: p(θ)

Likelihood: p(x|θ)

Posterior: p(θ|x) ∝ p(x|θ)p(θ)

If p(θ) and p(θ|x) are in the same distribution family, p(θ) is conjugate to p(x|θ)

Analytical tractability

Interpretability as prior data

Sequential updating

The prior Beta(𝛼, 𝛽) can be interpreted as 𝛼 − 1 prior successes and 𝛽 − 1

prior failures

The posterior Beta(𝛼′, 𝛽′) incorporates 𝑘 observed successes and 𝑛 − 𝑘

observed failures

Update rule: posterior parameters are simply the prior parameters plus the

observed data



Jeffrey’s prior

Jeffrey’s priors are a way of expressing «objective» or «non-informative» prior

knowledge, i.e. let the data speak for themselves.

This mean that the prior should have little or no prior information about the

parameter of interest.

Bayesian point estimation

How do we summarize the posterior distribution? We have many options!

Choosing a Point Estimate

Note: importantly, we now have the whole distribution so we can compute
whatever quantity of interest (e.g. 25th, 75th percentiles, variance,

skewness, …)



There are several factors that influence how we choose Bayesian point estimates:

Credible intervals

A credible interval is a range of values that contains the true parameter value

with given posterior probability

Types of Credible Intervals

Computed analytically (if we know 𝑓(𝜃|𝑥)) or numerically.

Limitations:

– Depend on prior specification

– Actual coverage may be greater/lower than nominal value

Hypothesis testing

The Bayesian approach gives a direct way of measuring the probability of

hypothesis

Depends on the use-case

Ease of computation

Interpretability

Robustness

Invariance properties

Comparison to Frequentist Estimates

MLE often similar to MAP with flat prior

Bayesian estimates incorporate prior information

Bayesian framework provides natural uncertainty quantification

Limitations:

Can be misleading for multimodal posteriors

Interpretation: “There is a 𝛼% probability that the true parameter value lies
within this interval, given the data and our prior beliefs”

Central credible interval of size 𝛼

• An interval 𝑎, 𝑏 where P(θ < a|data) = P(θ > b|data) = 1 − α/2

• Easy to compute and interpret

• May not be the shortest possible interval

Highest Posterior Density (HPD) Interval •

The shortest interval containing 𝛼% of the posterior probability

Always includes the posterior mode

May be disjoint for multimodal posteriors

Invariant under one-to-one transformations of parameters

This time we can compute hypotheses probability directly: P(H0|data) and

P(H1|data)

Then the test is based on the Bayes factor:



Sampling approaches

However, closed analytical solutions are not always available → resort to sampling

• Metropolis-Hastings Algorithm

– Basic principle: Proposal and acceptance/rejection

– Key steps:

• Propose a new state

• Calculate acceptance probability

• Accept or reject the proposal

– Tuning the proposal distribution

• Gibbs Sampling

– Sampling each parameter conditionally on others

– Useful for hierarchical models

– Convergence properties

• Other methods:

– Importance sampling

– Variational inference

Advantages: Bayesian VS Frequentist

Challenges: Bayesian VS Frequentist

BF =
P(data|H1)

P(data|H0)
=

P(H1|data)P(H1)

P(H0|data)P(H0)

𝐵𝐹 > 1 means that data more strongly support 𝐻1

𝐵𝐹 < 1 means that data are more compatible with 𝐻0

Bayes factors quantify evidence in favor of a null hypothesis, rather

than only allowing 𝐻0 to be rejected or not



Practical considerations

The choice may often depend on practical requirements and considerations:

• Field-specific conventions

• Nature of the problem, e.g.:

– Availability of prior information

– Possibility to run repeated experiments

• However, often both approaches reach similar results

– Large sample sizes

– Objective priors can lead to similar frequentist methods – Calibrated Bayes

approaches attempt to ensure good frequentist properties



Learning theory

What is learning?

Learning is about creating systems that can improve their performance on a task

through experience (i.e., data). More formally:

• Experience (E): Data used for learning

– Historical observations

– Experimental measurements

– Simulated data

• Task (T): What we want to accomplish
– Predicting house prices

– Classifying particle interactions

– Clustering galaxy types

• Performance (P): How we measure success
– Prediction accuracy

– Mean squared error

– Classification precision/recall

Learning paradigms & supervision

Goal:

Learning a mapping function , where:

• X: Input space (e.g., raw data, signals, measurements).

• Y: Output space (e.g., predictions, classifications, clusters).

Labels & Annotations:

Annotations (e.g., labels for target outputs ) guide the learning process but come

with challenges:

Examples: Associating particle species with signals, associating invariant mass

with measured momenta.

Supervision Spectrum

We have several learning paradigms depending on the degree of supervision provided

to the model

Require expertise.

Are time-intensive.

Demand a large volume for effectiveness.



Learning tasks: what are we trying to learn?

We have different learning tasks depending on what kind of output the model should

produce

Training procedure

The learning phase, training, is carried out differently depending on the learning

paradigm

Supervised

• The model learns from pairs of inputs/desired outputs;

– e.g. fruit image/fruits category

• Parameters adjusted to minimize “difference” between predicted and desired

outputs (loss function)

– E.g. Cross Entropy (CE)

• Learning is guided by expert annotation

• Performance clearly defined by the loss or other quantitative measures

– E.g. accuracy, precision, recall



Unsupervised

• The model sees data only and searches patterns in data

– E.g. fruit image/groups of similar images

• Parameters adjusted to compute convenient representation

– E.g. latent space where similar images are close-by

• Learning is guided by data structure and representation, without feedback

• Not clear how to measure performance

– Typically requires interpretation of results

– Many interpretations may be possible!!

• which one is of interest?

Remarks



Least Squares



Neural Networks and Decision Trees



Training remarks



Challenges:

• Overfitting is very common if architecture not tuned properly
• Mitigation strategies: Regularization, Dropout, Early stopping

• Vanishing/exploding gradients
• Activation functions squeeze neuron outputs between 0 and 1

If architecture is deep, we risk ending up with repeated multiplications of very

small numbers, which lead either to vanishing gradients (similar for exploding

case when activation is unbounded, e.g. relu)

Mitigation strategies: careful weight initialization, batch normalization,

residual connections

• Practical aspects to mind

• Batch size selection

• Learning rate initialization and scheduling

• Loss function

Decision Trees




